MAC User's Guide

Version 3.03, February 12, 2014

Yves Leduc, Greg C. Warwar

MAC is based on an idea of Greg C.
Warwar. The program was developed
to add flexibility and interactivity to
language manipulating data.

Language Purpose

MAC is a MACro preprocessor dedicated to the preparation of ASCII data files. The program
was developed to add flexibility and interactivity to language manipulating data.

MAC understands fairly simple directives: assignations, conditions, file inclusions and exits. It
is interpreted. MAC is fully integrated into UNIX world as it understands the UNIX data pipe.

Unlike C preprocessor, process is strictly sequential. Input files are scanned line by line. A line
beginning with the symbol '# is considered as a macro directive. Macro directives modify the
behavior of MAC. Other lines are considered as data lines. MAC processes data lines
according to the previously defined macro directives. To avoid loops, a recognized macro is
replaced by its direct definition, MAC does not attempt to go further by evaluating the
definition itself.

Each time it is possible, the syntax of MAC was kept identical to C preprocessors. Some
features are suppressed (macro functions, pragma directives...). MAC does understand features
not handled by C preprocessors (default value, indirection, messages, interactive mode,
prefixes, arithmetic computation including usual mathematical functions, ...).

MAC is able to analyze inputs and to send warning and error messages. Debug is eased thanks
to various integrated trace capabilities including 'verbose' mode and several levels of
comments.

MAC supports two types of input: standard input "stdin" and ASCII files. Output is directed
to standard output "stdout". Warning, error messages and trace are directed to standard error
output "stderr".

MAC is fast and can be made faster and more secure thanks to the use of macro prefixes.

MAC is written in ANSI-C and is currently running on UNIX machines like HP, Sun and on
DOS machines.

MAC User's Guide User's Guide o 2

Glossary

MACRO:

DIRECTIVE:
TOKEN:

OPERATION:

SEQUENCE:
DATA:

BLOCK:
LIST:

Identifier which will be replaced by its definition. All definitions are stored internally as
strings.

name: left value
definition: right value
MAC command. Directives begin with symbol #. They modify the behavior of MAC.

A token is any printable ASCII text taken as a whole by MAC. If punctuation marks,
weird symbols or space have to be included into a single token, use single quotes to
delimit the token.

These symbols are not considered as delimiters: a...z A...Z0..9%_()!=<>|&[]1%

Usual monadic and dyadic functions as defined in C language. Operations are applied
only to numbers (internal type for operations: double precision).

Set of tokens delimited by one or more delimiters.

Input line that is not recognized as a macro directive. MAC processes data according to
the previous MAC directives.

Set of contiguous input lines delimited by #if, #ifdef, #ifndef, #else or #endif.

Set of tokens delimited by commas, and declared as a list by dedicated directives (this is
an advanced feature).

MAC User's Guide User's Guide .

Convention Used in this Guide

NAM:

DIG:

VAL:
EXPR:
COMMENT:
[xXxXx]:
XXX:
[xxX..]:

XXX [XXX..]:

>
€«

macro identifier (must be a token beginning by a letter, $ or).

one digit (0..9).

Value or macro identifier.

Expression containing recognized functions, macro identifiers or numbers.
any text ignored by MAC (not processed nor output).

at most one, i.e. XXX is optional, a sequence of xxx is not authorized.
exactly one, i.e. xxx is mandatory, a sequence of xxx is not authorized.

0, 1 or more, i.e. xxx is optional, a sequence of xxx is authorized.

1 or more, i.e. xxx is mandatory, a sequence of xxx is authorized.

keyboard input.

screen output.

MAC User's Guide User's Guide e 4

MAC Command Line

MAC [option..] [filename..]

Options and filename can be mixed in any order. Options are processed immediately from left
to right. Files are stored into a stack waiting for a sequential processing. First file to be
processed is the last one.

MAC is compatible with UNIX pipes (see option "-s/tdin]"):

. UNIX Command | MAC -s | UNIX Command ...

. UNIX Command | MAC -s > output file

MAC User's Guide User's Guide

Command Line Options

-u [sage]

Usage on standard output.

This command produces a short usage on the standard output (see also appendix A).

When this option is checked, other options are ignored.

-b [uilt]

Built information on standard output.

When this option is checked, other options are ignored.

-h [elp]

Help on standard output.

This command produces a help panel on the standard output(see also appendix B).

When this option is checked, other options are ignored.

-s [tdin]

Standard input filter.

MAC is considering the standard input "stdin" as its only input, if no input files are provided.
Keyboard entry is possible or data can be piped from other UNIX commands.

If input files are provided together with "stdin", all input files will be always processed before
standard input.

MAC User's Guide User's Guide .

-e [cho] file_pathname

Echoes macros from standard input into file.

It is sometimes interesting to trap the keyboard entry to record a MAC session.

If the file <file pathname> already exists, or if MAC is unable to open it, MAC will stop,
producing an error message.

It is strongly recommended to use single quotes around the pathname as UNIX parser could
break its pathname into pieces.

All macro directives input through standard input "s¢din" will be recorded into the echo file.
Data will not be recorded. Echo file is directly reusable by MAC, as it is.

This option is automatically disabled, if option "-s/tdin]" is not chosen.

-d [efine] nam val

Equivalent to directive "#define nam val".

It is strongly recommended to use single quotes around the value as UNIX parser could break
value into pieces.

Value <val> is mandatory for this option.

-i [nt] nam expr

Equivalent to directive "#int nam expr".

It is strongly recommended to use single quotes around the expression as UNIX parser could
break expression into pieces.

Expression <expr> is mandatory for this option.

-r [eal] nam expr

Equivalent to directive #real6 nam expr”.

It is strongly recommended to use single quotes around the expression as UNIX parser could
break expression into pieces.

Expression <expr> is mandatory for this option.

-f [ix] nam expr

Equivalent to directive "#fix2 nam expr".

It is strongly recommended to use single quotes around the expression as UNIX parser could
break expression into pieces.

Expression <expr> is mandatory for this option.

-v [erbose]

Verbose mode enforced, trace to standard error output.

MAC User's Guide User's Guide

Verbose option produces extended comments on standard error output "stderr" about the
processing of the directives and data. This option should be used with keyboard entry or
during debug.

This option enforces the verbose mode during all the MAC process and cannot be turned off
by macro directive "#verbose".

It is strongly recommended to redirect output into an output file to separate trace generated by
the verbose mode and data output. It is possible to redirect trace and output into separate file
thanks to UNIX redirection (see examples next chapter).

-q [uiet]

Remove warning messages.

MAC is issuing some warning messages, especially when redefining existing macros,
removing not existing objects... If messages hurt you, use this option to suppress warnings.
This option is not generally recommended as it can hide precious warning messages.

-1 [ine]

Replace macros by blank lines in data output.

By default, MAC does not output a blank line when processing a macro directive. It is
sometimes requested that the processed output data remain on the same line number as the
input. In any cases, with or without checking this option, MAC is able to produce error
messages with correct error location.

-p [refix] nam

Defines prefix for macro identifier.

It is often convenient to use prefix for the macro identifier as input file is more readable. The
processing is more straightforward, MAC is faster especially when you are building huge table
of macros and processing huge amount of text. There is no new constraint to the names of the
macros: macros continue to be recognized inside other directives but macros inside data will
not be processed if their names do not begin by the prefixes. For internal reasons, if "-p/refix]"
option is checked, the prefixes '$' and '@' are added automatically to the list of prefixes you
have defined. They are the prefixes of predefined macros ($N, $V, $D, $F, $T) or the prefix
of macro indirection (@).

-c [omment]

Comment line traced on standard error output.

There are two types of macro comments. Active comment beginning with "##" can be traced
on standard error output "stderr" when this option is checked. It helps to check and document
the flow of data processing. Other comment, the passive comment beginning with "#*" is
never traced on "stderr" and can be used to document the source files.

[filename..]

Pathname of ASCII file(s) to be expanded sequentially. Process is done with the rule:

last in, first processed,

MAC User's Guide User's Guide * 8

at the exception of standard input "stdin" (option -s[tdin]), which is always processed after the
process of these files is completed.

It is strongly recommended to use single quotes around the filename as UNIX parser could
break its pathname into pieces.

Not existing files or locked files will cause MAC to issue an error message and to exit.

MAC User's Guide User's Guide 9

MAC Predefined Macros

Some macros are predefined automatically by MAC. They are not protected and can be
overwritten during a MAC session. They are especially useful to document output file.

$N:
$D:
$V:
$F:
$T:

empty string.

current time and date at the beginning of the process.
current version of MAC.

current file name.

current file tag name (see directive "#tag").

MAC User's Guide User's Guide

10

Macro directives

Inside processed files, directives recognized by the MACro expander begin with the symbol #.
MAC directives MUST be the first word of the line. Unrecognized directives will cause a
warning.

#include val

File to be processed. <val> can be a pathname (single quotes are recommended if pathname
contains weird symbols). If <val> is itself a macro, <val> is replaced by its definition.

Including a file that cannot be accessed causes an error message and MAC exit.

Pathname <val> must be a token.

#insert val

File to be copied without processing. <val> can be a pathname (single quotes are
recommended if pathname contains weird symbols). If <val> is itself a macro, <val> is
replaced by its definition.

Inserting a file that cannot be accessed causes an error message and MAC exit.

Pathname <val> must be a token.

#define nam [val]

Definition without arithmetic evaluation. <nam> must be an identifier. If <val> is itself an
existing macro, <val> is replaced by its definition.

If <val> is omitted, and macro was not yet defined, macro is defined as containing an empty
string.
If <val> is omitted and macro already exists, its definition is reevaluated, i.e. <val> will be

scanned for macro replacement.

It is allowed to redefine a macro if macro is empty. Redefining a macro with a new definition
causes a warning message. <val> does not need to be a token but leading and ending spaces
are dropped.

Use single quotes as delimiter if you want to include leading or ending spaces. Use back
quotes to protect definition from processing.

MAC User's Guide User's Guide e 11

#default nam [val]

If <nam> is already defined, the "#default" directive is ignored. The behavior of this directive
is similar the directive "#define".

<val> does not need to be a token, leading and ending spaces are dropped.

#undef nam [nam..]

Undefine a list of macros. Macros are removed and memory is freed.

Removing a macro that is not existing causes a warning message.

#int nam [expr]

[Definition with] evaluation and casting to integer (truncation).

This directive is similar to "#define" but arithmetic evaluation is performed, data are cast to
integer and stored as a string.

If no <expr> is provided, the definition of <nam> is cast to int and stored as a string.

If results cannot be expressed as a number, an error message is issued.

#real [dig] nam [expr]
[Definition with] evaluation and casting to floating real (scientific notation with <dig> digits
for decimal part, default = 6).

This directive is similar to "#define" but arithmetic evaluation is performed, data are cast to
float and stored as a string.

If no <expr> is provided, the definition of <nam> is cast to double and stored as a string.

If results cannot be expressed as a number, an error message is issued.

#fix [dig] nam [expr]
[Definition with] evaluation and casting to fixed real (decimals fix notation with precision
equal to <dig>, default = 2).

This directive is similar to "#define" but arithmetic evaluation is performed, data are cast to
fixed real and stored as a string.

If no <expr> is provided, the definition of <nam> is cast to fixed real and stored as a string.

If results cannot be expressed as a number, an error message is issued.

#cat nam [val..]

Concatenate a sequence of <val> to the definition of <nam>.
If <val> is itself a macro, its definition is used.

If <nam> does not exist, the macro is created and its definition contains the result of the
concatenation of <val>.

<val> must be a token or a sequence of tokens.

#ask nam [val]

If <nam> is already defined, the "#ask" directive is ignored.

MAC User's Guide User's Guide e 12

If <nam> is not yet defined, message <val> is displayed on stderr and MAC is waiting for
input data from standard input "stdin".

If <val> contains macros, these macros are replaced by their definition.

The behavior of this directive is similar the directive "#default". Message <val> can be
omitted, although it does not make sense.

#freeze nam [nam..]

Put single back quotes around the definition of <nam>. All previous back quotes are removed.
New back quotes are placed at the begin and at the end of the definition. This directive can
process a sequence of macros. Definition is then protected from further processing.

#melt nam [nam..]

Remove all single back quotes from definition of <nam>. This directive can process a
sequence of macros. The definition is no more protected against processing. This directive
itself does not try to reevaluate the definition.

#if expr

Execute "if block" when <expr>, evaluated and cast to integer, is not zero. If <expr> cannot be
evaluated and/or cannot be cast to integer, an error message is issued.

See also "#else" and "#endif" directives.

#ifdef nam [val]

Execute "ifdef block" when name is defined equal to <val> (string comparison). If <val> is
itself a macro, during test <val> is replaced by its definition. If <val> is omitted, macro is
tested to be existing, its content is not checked.

See also "#else" and "#endif" directives.

<val> must be a token.

#ifndef nam [val]

Execute "ifndef" block when name is defined not equal to value (string comparison). If <val>
is itself a macro, during test <val> is replaced by its definition. If <val> is omitted, macro is
tested to be not existing.

See also "#else" and "#endif" directives.

<val> must be a token.

#else [comment]

"else block". Complete the "#if", "#ifdef" or "#ifndef" directives. "if block" must be complete
inside a file (if, [else,] endif).

It is not allowed to begin with a if directives in a file and complete it by a else directive in
another one. Comment is always ignored.

#endif [comment]

End of conditional block. If block must be complete inside a file (if, [else,] endif).

MAC User's Guide User's Guide e 13

It is not allowed to begin with a if directives in a file and close it by a "#endif" in another one.
If the number of "#endif" does not match the number of if directives, MAC will abort with an
error message. Comment is always ignored.

#msg [val]

Send message <val> to standard error output "stderr".

If <val> is a macro, it is replaced by its definition. If <val> is omitted, a blank line is sent to
standard error output "stderr".

#exit [val]

Exit from current file. MAC will continue to process remaining files but MAC normal
termination occurs if nothing more has to be processed.

Message <val> is issued on standard error output "stderr".

#quit [val]
MAC normal termination whatever remaining files to be processed exist.

Message <val> on standard error output "stderr".

#abort [val]

Abnormal termination, <val> is sent to standard error output "stderr".

If <val> is a macro, it is replaced by its definition.

#stop [val]

Enforce unconditional MAC termination. It is ALWAYS processed, independently of any if
condition, "skip" directive... This directive is useful when using MAC in interactive mode.
Message <val> on standard error output "stderr".

#skip [expr]
Toggle Skip Mode On|Off [or set/reset if <expr> is (not) zero].

It is ALWAYS processed, independently of any if condition... When skip mode is enforced,
directives and data are skipped.

#verbose [expr]

Toggle Verbose Mode On|Off [or set/reset if <expr> is (not) zero].

This directive cannot turn off the command line option "-v/erbose]". Every line is analyzed
and processing is detailed on standard error output "stderr".

#macro [nam..]

List all macros on standard error output "stderr" [or a sequence of macros by name]. This
directive is used for debug.

MAC User's Guide User's Guide * 14

#status [val]

Show status of MAC variables on standard error output "stderr". This directive is used for
debug.

<val> is sent to standard error output "stderr" as status title . If <val> is a macro, it is replaced
by its definition.

It is ALWAYS processed independently of any if condition.

[val]

MAC single line active comment,. In comment mode, <val> is traced on standard error output
"stderr".

#* [comment]

MAC single line passive comment. <comment> is always ignored and never traced.

#tag [val]

Define a file tag name for currently processed file. New tag is <val> and will be used in error
or warning messages. Without tag directive, the default file tag name is the file name itself.

#list nam

Definition of previously defined macro <nam> is considered as an unidimensional list of
elements separated by commas. A list of macros nam[0], nam[1],.. is created.

This is an advanced feature. Its use will be documented later.

MAC User's Guide User's Guide * 15

Functions and expressions

Functions recognized by the MACro expander

Operations follow the C language convention (power function excepted: symbol *) applied to
double. All operations apply ONLY to numbers or to macros that can be evaluated as
numbers. All operation produces numbers.

TAKE CARE: Monadic functions MUST be enclosed between parenthesis (see below)

Grouping sub expressions

Parenthesis is used to group sub expressions. It is recommended to use parenthesis as often as
possible to remove ambiguity.

X Parser is not complying priority rules of C (new parser is in development).

MAC Monadic functions

+ -

(sin () (asin ()
(cos () (acos ()
(tan () (atan ()
(sinh ()
(cosh ()
(tanh ())

(exp () (log()
(log10 ()
(abs ()) (sign ()

MAC User's Guide User's Guide * 16

(floor ()) (ceil () (round ())

MAC Dyadic functions

| &&

MAC Indirection

[@..]nam

Indirection is possible using symbol(s) '@' ahead a macro names. MAC handles multiple level
of indirection.

Representation of strings and numbers

MAC is storing data as strings in an internal dictionary.

The macro dictionary is updated by many directives. It is possible to obtain an image of the
content of the dictionary using directive "#macro". Memory is allocated dynamically. As a
consequence, the dictionary is reordered as soon as a directive has to remove or update a
previous definition.

Text

Quotes can be used to protect text from evaluation or to determine field (space, weird
symbols...). Quotes are interpreted slightly differently in directives and data:

"text’ (directive): Determine field, quotes are removed in output. The text is considered as a
whole (single token).

'text’ (data): No effect. Quotes are considered as regular single characters. The text is
processed by tokens.

“text’ (data or directive): Text unprocessed by MAC, back quotes are removed in output.
The text is considered as a whole (single token).

"text" (data or directive): No effect. Double quotes are considered as regular single
characters. The text is processed by tokens.

Strings are converted to numbers (C number of type double) when requested. All arithmetic is
performed with double precision. Data are cast to integer or real at output as requested by
dedicated directive.

Numbers accepted by MAC

Convention follows FORTRAN, Pascal or C languages.

Symbols reserved to MAC

Do not use back quotes or '@' in data lines except for text protection () or indirection (@)

MAC User's Guide User's Guide o 17

Examples by topics

Example 1: usage and help (option)

-u[sage]
-h[elp]

Command Line: MAC -u

Result: The latest usage of MAC will be shown on screen (see also appendix A).

Command Line: MAC -h > 'foo.help'

Result: File 'foo.help’ will contain the latest help of MAC (see also appendix B).

Command Line: MAC -h -s toto > 'foo.help'

Result: Result identical to previous example. Options other than "-A4" are ignored.

Example 2: standard input, echo, verbose (option).

-s[tdin]

-¢[cho] pathname

-v|erbose]

Command Line: MAC -s

Result: MAC is waiting for input from keyboard. Use exit directive ("#exit", "#quit" or
"#stop") to quit keyboard input. Use keyboard to input line by line macro directives and data.
As input and output are interleaved on screen, it is recommended to redirect output to a file.
When using the keyboard as input, it is also recommended to use option "-v/erbose]" to track
mistakes:

MAC User's Guide User's Guide * 18

Command Line: MAC -s -v > foo.out

Result: MAC is waiting for input from keyboard. Verbose mode is enforced. Trace of process
appears to screen. Result is redirected to file 'foo.out' and does not mix with the trace.

Command Line: MAC -s -v -e '/user/JDoe/foo.echo' > foo.out

Result: MAC is waiting for input from keyboard. Verbose mode is enforced. Trace of process
appears to standard error output "stderr". Result is redirected to file 'foo.out' and does not mix
with the trace. File 'foo.echo' stores all macro directives (and only macro directives) you have
input from keyboard through standard input "stdin".

Command Line: (MAC -v foo.in > foo.out) >& foo.err

Result: MAC output is redirected towards 'foo.out'. Trace or messages are redirected towards
'foo.err' (UNIX).

Here is the transcription of a MAC session.

% MAC -s -v -e foo.echo > foo.out

Option -e[cho]: Standard Input will be echoed into file 'foo.echo'.
Option -v[erbose]: Verbose mode is enforced, trace on stderr.

Input files to be sequentially processed:
[1]: Standard Input

No prefix defined, all macros are global.

Macros currently defined:

[1]1: (global) <$N> <>

[2]: (global) <§$V> <APOLLO V3.01>

[3]: (global) <$D> <Sat Oct 17 15:47:38 1992>
[4]: (global) <$F> <Standard Input>

[5]: (global) <$T> <Standard Input>

(FILE) -> processing 'Standard Input', line 0
#quit

(EXIT) -> from file 'Standard Input', line 1

%* CALL FOR EXIT, MAC NORMAL TERMINATION *
%

AN AN ARNADARAAL ¥

Example 3: define, int, real, fix (option).

-d[efine] nam val
-i[nt] nam expr

-r[eal] nam expr

-flix] nam expr

Command Line: MAC -s -v -i num 123

MAC User's Guide User's Guide * 19

Result: MAC is waiting for input from keyboard. Verbose mode is enforced. Macro num' is

defined as an integer equals to '123'".

Command Line: MAC -s -v -d textl 'Hello world!' -i num 123

-ic 34

Result: MAC is waiting for input from keyboard. Verbose mode is enforced. Macros 'textl’,

'num' and 'count' are defined.
Here is the transcription of this last MAC session.

% MAC -s -v -d textl ' Hello world!' -i num 123 -i count 34

Input files to be sequentially processed:
[11: Standard Input

No prefix defined, all macros are global.

Macros currently defined:

[1]: (global) <$N> <>
[2]: (global) <$V> <APOLLO V3.01>
[3]: (global) <$D> <Sat Oct 17 16:00:04 1992>

[4]: (global) <textl> < Hello world!>
[5]1: (global) <num> <123>

[6]: (global) <c> <34>

[7]: (global) <$F> <Standard Input>

[8]: (global) <$T> <Standard Input>

(FILE) -> processing 'Standard Input', line 0
#quit

(EXIT) -> from file 'Standard Input', line 1

*** CALL FOR EXIT, MAC NORMAL TERMINATION **%*
%

ANV A MMM Y

Option -v[erbose]: Verbose mode is enforced, trace on stderr.

Example 4: quiet mode (option).

-([uiet]

Command Line: MAC -s -q

Result: MAC will issue no warning messages at all.

Example 5: prefix (option).

-p[refix] nam

Command Line: MAC -s -v -p 'RULE_' -p '$D' > foo.out

Here is the transcription of this MAC session.

> % MAC -s -v -p 'RULE_' -p '$D' > foo.out

€«

€« Option -p[refix] : Prefix '$' and '@' are automatically added by MAC.
€« Option -v[erbose]: Verbose mode is enforced, trace on stderr.

MAC User's Guide User's Guide

* 20

Input files to be sequentially processed:
[1]: Standard Input

Prefixes currently defined:
[1]: (system) <$>

[2]: (system) <@>

[3]1: (user) <RULE_ >
[4]: (user) <$D>

Macros currently defined:

[1]: (global) <$N> <>

[2]: (global) <$V> <APOLLO V3.01>

[3]: (global) <$D> <Sat Oct 17 17:32:52 1992>
[4]: (global) <S$F> <Standard Input>

[5]: (global) <S$T> <Standard Input>

(FILE) -> processing 'Standard Input', line O

#quit

(EXIT) -> from file 'Standard Input', line 1

*** CALL FOR EXIT, MAC NORMAL TERMINATION ***
%

ANV AN

In this session, all data line containing a macro beginning by 'RULE ', by '$D', by '$' or by '@
will be replaced by its definition. Other macros in data lines will be ignored. Processes of
macros directives are not affected by prefixes.

Example 6: blank line (option).

-1[ine]

Command Line: MAC -s -1 > foo.result

Result: Each macro directive will be replaced by a blank line. Without option "-/", a macro
directive does not produce a blank line in the output file.

Example 7: comment mode (option).

-c[omment]

Command Line: MAC foo.in -c > foo.result

Result: line beginnings by "##" are traced on standard error output.

Example 8: input files (command line).

filenames

MAC User's Guide User's Guide o 21

Command Line: MAC -v 'filel' -s 'file2' '/user/Doe' > foo.result

Result: Input files are processed, beginning by the last one. Standard input will be processed

after all input files.

Here is the transcription of this MAC session.

% MAC2 -v 'filel' -s 'file2' '/user/Doe' > foo.result

Option -v[erbose]: Verbose mode is enforced, trace on stderr.

Input files to be sequentially processed:
[1]: /user/Doe

[2]: file2

[3]: filel

[4]: Standard Input

No prefix defined, all macros are global.

Macros currently defined:

AAANNARARNADNARARANRNANARARARNARNAARA

[1]: (global) <$N> <>
[2]: (global) <$V> <APOLLO V3.01>
[3]: (global) <$D> <Sat Oct 17 18:04:34 1992>
[4]: (global) <$F> <Standard Input>
[5]: (global) <$T> <Standard Input>
(FILE) -> processing '/user/Doe', line 0
etc. etec.
€« %

Example 9: predefined macros.

Predefined macros

Five macros are currently predefined by MAC: $N, $V, $D, $F and $T. They can be used as

user defined macros.

> % MAC -s -v > foo.out

€

€« Option -v[erbose]: Verbose mode is enforced, trace on stderr.
€

€« Input files to be sequentially processed:

€« [1]: Standard Input

€

€« No prefix defined, all macros are global.

€

€« Macros currently defined:

€« [1]: (global) <$N> <>

€« [2]: (global) <$V> <APOLLO V3.01>

€« [3]1: (global) <$D> <Sat Oct 17 15:47:38 1992>
€« [4]: (global) <S$F> <Standard Input>

€« [5]: (global) <S$T> <Standard Input>

€

€« (FILE) -> processing 'Standard Input', line 0
> #quit

MAC User's Guide User's Guide

° 22

rAAANA

(EXIT) -> from file 'Standard Input', line 1

*** CALL FOR EXIT, MAC NORMAL TERMINATION ***

%

Example 10: define, default, undef, int, real, fix.

#define nam [val]
#default nam [val]
#undef nam [nam..]
#int nam [expr]
#real nam [expr]

#fix [dig] nam [expr]

>
€

% MAC foo -d C 123 > foo.out

%

Where input file 'foo'":

#define
#define
#defaul
#defaul
#int
f#real
#£ix2
#define
#define
#int
#real
#£fix
#define
#int
#define
#define
macros

.
.

.
.

s .o
- o

.

’

WOZEHRGHIEGEEHOOW B

’

“toto”
#undef
#£fix
#real
#define

t
t

A
B
C
D
E
F
G
H
I
J
K
L
M
N
(o

' Hello World! '
vall

999

toto

432.1

1

123.4567

B

C

((abs(-1)) + 12) / 7
(exp (1))

20 * (logl0(1000))
'my name is D'

C + 2

toto gqwerty
are defined now

A
F
L
D

mOoOZRUERUHINOHMEAUOOQWY

ct
o
ct
o

CEGI

macros are redefined now

text including spaces)

token not defined as a macro)

default not used as C is already defined)
default used as D is not already defined)
number with casting to integer)

number with casting to real (scientific))
number with casting to real (two decimals))
using definition of another macro)

using definition of another macro)
evaluation of an expression and casting)
evaluation of an expression and casting)
evaluation of an expression and casting)
text where the token D is already defined)
number, token C is already defined)

macro with empty definition)

token not defined as a macro)

data 1] without token defined as macro)
data 2] with token defined as macro)
data 3] with token defined as macro

4] with token defined as macro
data 5] with token defined as macro
data 6] with token defined as macro
data 7] with token defined as macro
data 8] with token defined as macro

[
[
[
[
[
[
[
[
data [9] with token defined as macro
[
[
[
[
[
[
[
[

data [10] with token defined as macro
data [11] with token defined as macro
data [12]

data [13] with token defined as macro
data [14] with token defined as macro
data [15] with token defined as macro
data [16] with token defined as macro
data [17] without token defined as macro)

)
)
)
)
)
)
)
)
)
with token defined as macro)
)
)
)
)
cr
)

data [18] with token defined as macro
remove definition of macros)

casting of already defined macro)

casting of already defined macro)

macro D is already defined)

data [19] is a blank line)

data [20] without token defined as macro)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(data
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

MAC User's Guide User's Guide

* 23

AT = A (data [21] without token defined as macro)
"B° = B (data [22] with token defined as macro)
o = C (data [23] without token defined as macro)
‘D = D (data [24] with token defined as macro)
‘E° = E (data [25] without token defined as macro)
“F = F (data [26] with token defined as macro)
“GT = G (data [27] without token defined as macro)
“HY = H (data [28] with token defined as macro)
I = I (data [29] without token defined as macro)
gt = J (data [30] with token defined as macro)
“K* = K (data [31] with token defined as macro)
LT = L (data [32] with token defined as macro)
‘M = M (data [33] with token defined as macro)
N° = N (data [34] with token defined as macro)
ol = [e] (data [35] with token defined as macro)
‘P = P (data [36] without token defined as macro)
“toto” = toto (data [37] with token defined as macro)
Data lines contained into 'foo' are processed according to macro directives,
output is located into file 'foo.out"
macros are defined now (corresponding to [17])
A = Hello World! (corresponding to [2])
B = vall (corresponding to [3])
C = 123 (corresponding to [4])
D = toto (corresponding to [5])
E = 432 (corresponding to [6])
F = 1.000000e+00 (corresponding to [71])
G = 123.46 (corresponding to [81])
H = vall (corresponding to [91)
I = 123 (corresponding to [10])
J = 1 (corresponding to [11])
K = 2.718282e+00 (corresponding to [12])
L = 60.00 (corresponding to [13])
M = my name is toto (corresponding to [14])
N = 125 (corresponding to [15])
[e] = (corresponding to [16]
P = P (corresponding to [17])
toto = qwerty (corresponding to [18])
(corresponding to [19])
macros are redefined now (corresponding to [20])
A = A (corresponding to [21])
B = vall (corresponding to [22])
C = C (corresponding to [23])
D = qwerty (corresponding to [24])
E = E (corresponding to [25])
F = 1.00 (corresponding to [26])
G = G (corresponding to [27])
H = vall (corresponding to [28])
I = I (corresponding to [29])
J = F (corresponding to [30])
K = 2.718282e+00 (corresponding to [31])
L = 6.000000e+01 (corresponding to [32])
M = my name is toto (corresponding to [33])
N = 1 (corresponding to [34])
o = (corresponding to [35])
P = P (corresponding to [36]
toto = qwerty (corresponding to [37])
- -
Example 11: include and insert.
#include val
#insert val
> % MAC foo -d fnm '/user/John/Doe/' > 'foo.out'
€ %
MAC User's Guide User's Guide e 24

Where input file 'foo":

title is included now

inserting file
#insert '/user/title'

processing file fnm
#include fnm

A’ is equal to A
"B’ is equal to B

thank you for your attention

Inserted file: 'Yuser/title’

EXAMPLE OF FILE INSERTION
#define A 123
A" is not defined

Included file: '/user/John/Doe'

EXAMPLE OF FILE INCLUSION
#define B 234
"B’ is defined

Data lines contained into 'foo' are processed according to macro directives, files are inserted

(copied without processing) or included (copied with processing).

Output is located into file 'foo.out":

title is included now

inserting file

EXAMPLE OF FILE INSERTION
#define A 123

A" is not defined

processing file /user/John/Doe
EXAMPLE OF FILE INCLUSION
B is defined

A is equal to A
B is equal to 234

thank you for your attention

Example 12: concatenation.

#cat nam [val..]

> MAC foo -d gen RULE > 'foo.out'
€« %

Where input file 'foo'":

MAC User's Guide User's Guide

» 25

fdefine A 1

#cat B gen '_' A

properly concatenated, the name of the rule is B
f#define C ABRA

$#icat C CAD C

(o]

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

properly concatenated, the name of the rule is RULE_1
ABRACADABRA

Example 13: ask and message.

#ask nam [val]

#msg [val]

% MAC foo -d A 123 > 'foo.out'

Hi dude!
Introduce number 2:

234

Thank you!
%

AV ANV

Where input file 'foo':

#msg 'Hi dude!'’

#ask A 'Introduce number 1:' (skipped as A is already defined)
#ask B 'Introduce number 2:'

number 1 is equal to A

number 2 is equal to B

#define message 'Thank you!'

#msg message

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

number 1 is equal to 123
number 2 is equal to 234

Example 14: freeze and melt.

#freeze nam [nam..]

#melt nam [nam..]

> % MAC foo > 'foo.out'

€« %

MAC User's Guide User's Guide

* 26

Where input file 'foo":

#define B A plus A
#define C A plus A

(B) is identical to (C)
#freeze B

#define A 123

f#define B

#define C

(B) is no more identical to (C)
#melt B

#define B

(B) is identical to (C)

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

(A plus A) is identical to (A plus A)
(A plus A) is no more identical to (123 plus 123)
(123 plus 123) is identical to (123 plus 123)

Example 15: if, else, endif, ifdef, ifndef.

#if expr

#ifdef nam [val]
#ifndef nam [val]
#else [comment]

#endif [comment]

> % MAC foo -d AA something -d BB gwerty > 'foo.out'
€ %

Where input file 'foo'":

#define AA

#ifdef AA

"AA" is defined, but empty or not (AA)
#endif

#ifdef BB gwerty

"BB’ is defined (BB)

#endif

#ifdef CC

this line will be skipped

ffelse

this line is processed as 'CC" is not defined
#endif

#ifndef DD

this line is processed as DD’ is not defined
#endif

#define var 123

#if ((var - 122) == 1)

Yes, (var - 122) == 1!

#endif

#if (var > 0)
Yes, var is positive
#if (var > 100)

MAC User's Guide User's Guide

Yes, var is greater than 100
#fendif
#fendif

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

AA is defined, but empty (something)

BB is defined (gqwerty)

this line is processed as CC is not defined
this line is processed as DD is not defined
Yes, (123 - 122) == !

Yes, 123 is positive

Yes, 123 is greater than 100

Example 16: exit.

#exit [val]

> % MAC foo > 'foo.out'
€« I quit as you ask it so kindly
€ %

Where input file 'foo':

#ifdef NOTDEF
#exit 'skipped’

$#else

#quit 'I quit as you ask it so kindly'
#endif

> % MAC foo > 'foo.out'

€« I quit file /user/John/Doe

€ %

Where input file 'foo'":

#include '/user/John/Doe’
Welcome back to main file

and included file 'Yuser/John/Doe":

Welcome to file '/user/John/Doe'
#exit 'I quit file '/user/John/Doe’
this part is skipped

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

Welcome to file '/user/John/Doe'
Welcome back to main file

MAC User's Guide User's Guide

Example 17: quit.

#quit [val]

> % MAC foo > 'foo.out'
€« I quit as you ask it so kindly
€ %

Where input file 'foo':

#ifdef NOTDEF

#quit 'skipped’

$#else

#quit 'I quit as you ask it so kindly'
#endif

Example 18: abort.

#abort [val]

% MAC foo > 'foo.out'

line[1] [foo]
MAC user error - Horror!
%

ANV

Where input file 'foo'":

#ifdef NOTDEF
#quit 'skipped’
#else

#abort 'Horror!'
#endif

Example 19: stop.

#stop [val]

> % MAC foo > 'foo.out'
€« I am forced to quit
€ %

Where input file 'foo':

(...anything...)
#stop 'I am forced to quit '
(...anything...)

MAC User's Guide User's Guide

* 29

Example 20: skip.

#skip [expr]

> % MAC foo > 'foo.out'
€« %

Where input file 'foo":

#define A 'Hello world!'

#define condition 1

#skip condition (skip mode is set to ON)
this text will be skipped

#define SKIPPED 'forget it'

#skip (condition - 1) (skip mode is set to OFF)
Here is the message: A

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

Here is the message: Hello world!

"#skip" can be used as a toggle:

> % MAC foo > 'foo.out'
€« %

Where input file 'foo":

#define A 'Hello world!'

#skip (skip mode is toggled to ON)
this text will be skipped

$#define SKIPPED 'forget it'

#skip (skip mode is toggled to OFF)
Here is the message: A

Data lines contained into 'foo' are processed according to macro directives, output is located
into file 'foo.out":

Here is the message: Hello world!

Example 21: verbose.

#verbose [expr]

> % MAC foo > 'foo.out'

€

€« (3) -> #verbose

€« (....) <- <Verbose Mode> <Toggled to On>

MAC User's Guide User's Guide .

(4) -> #define B 234
(....) <- <234>

5) -> "B’ is equal to B
(2) <- <'B’ is equal to 234 >

(6) -> #verbose
(....) <- <Verbose Mode> <Toggled to Off>

AN

Where input file 'foo':

#define A 123

A’ is equal to A
#verbose

#define B 234

"B’ is equal to B
#verbose

#define C 345

"C’ is equal to C

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

A is equal to 123
B is equal to 234
C is equal to 345

Example 22: macro listing.

#macro [nam..]

> % MAC foo > 'foo.out'

€«

€« [1]1: (global) <$N> <>

€« [2]: (global) <$V> <APOLLO V3.01>

€« [3]: (global) <$D> <Tue Oct 20 18:31:23 1992>
€« [4]: (global) <$F> <foo>

€« [5]: (global) <$T> <foo>

€« [6]: (global) <A> <123>

€« [71: (global) <>

€« [8]: (global) <C> <' Hello World!!! '>
€« [91: (global) <D> <3>

€«

€« [11: (global) <S$N> <>

€« [2]: (global) <$V> <APOLLO V3.01>

€« [31: (global) <$D> <Tue Oct 20 18:31:23 1992>
€« [4]: (global) <$F> <foo>

€« [5]1: (global) <$T> <foo>

€« [6]: (global) <>

€« [71: (global) <C> <' Hello World!!'! '>
€« [8]: (global) <D> <3>

€« %

Where input file 'foo':

MAC User's Guide User's Guide

#define A 123

f#define B

#define C ' Hello World!'!'! '
#int D1+ 2

#macro

#undef A

#macro

Example 23: MAC status.

#status [val]

> % MAC foo > 'foo.out'

€

€« MAC Internal Status

€«

€« File Name : 'foo'
€« File Tag Name : 'foo'
€« File Level : 0
€« Current Line : 1
€«

€« Output line : 0
€«

€« Evaluation Mode : ON
€« Skip Mode : OFF
€« Prefix Mode : OFF
€« Verbose Mode : OFF
€« Line Mode : OFF
€« Echo Mode : OFF
€« Comment Mode : OFF
€« Warning Mode : ON
€«

€« %

Where input file 'foo'":

#status

Example 24: active and passive comment.

[val]

#* [comment]

% MAC foo > 'foo.out'

%

% MAC foo -c > 'foo.out'

**** comment number three

AARNY AV

MAC User's Guide User's Guide

32

Where input file 'foo":

#ifdef AAA

comment number one
#* comment number two
some data line

f#else

comment number three
#* comment number four
other data line

#fendif

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

other data line

Example 25: tag name.

#tag [val]

> % MAC foo > 'foo.out'

€

€ line[l] [foo]

€« line[2] [data file number 1]

€« MAC error - regular expression expected
€ %

Where input file 'foo':

#include '/user/John/Doe’

and include file 'Yuser/John/Doe'":

#tag 'data file number 1'
#int A 'not a number’

Example 26: indirection.

[@..]nam

> % MAC foo > 'foo.out'

€« %

Where input file 'foo":

f#define B A
#define C A
(1) 'A° is equal to A

MAC User's Guide User's Guide

33

(2) 'B’ is equal to B
(3) 'C is equal to C
(4) 'D is equal to D
#define @B D

(11) A" is equal to A
(12) "B’ is equal to B
(13) 'C’ is equal to C
(14) ‘D’ is equal to D
#define Q@B 123

(21) A’ is equal to A
(22) "B’ is equal to B
(23) 'C’ is equal to C
(24) 'D° is equal to D

(one level of indirection)

(two levels of indirection)

Data lines contained into 'foo' are processed according to macro directives.

Output is located into file 'foo.out":

(1)
(2)
(3)
(4)

(11)
(12)
(13)
(14)

(21)
(22)
(23)
(24)

is
is
is
is

oQwp

is
is
is
is

oQwp

is
is
is
is

oaQwp

equal
equal
equal
equal

equal
equal
equal
equal

equal
equal
equal
equal

to
to
to
to

op PP

to
to
to
to

oo

to
to
to
to

= Uo

Example 27: text manipulations.

'text’
'text’
“text’

"text"

(directive)
(data)

(data or directive)

(data or directive)

>
€

% MAC foo >

%

Where input file 'foo':

#define it

(1)
(2)
(3)
(4)

there
there
there
there

#define A
#define B
#define C
#define D

(11)
(12)
(13)
(14)

there
there
there
there

AH
are
are
are
are
it
A} itl
“ige
llitll

are
are
are
are

several
several
several
several

several
several
several
several

ways
ways
ways
ways

ways
ways
ways
ways

'foo.out'

to
to
to
to

to
to
to
to

say
say
say
say

say
say
say
say

it

Tig!
it
nig"

oQwp

MAC User's Guide User's Guide

34

(21)
(22)
(23)
(24)

(31)
(32)
(33)
(34)

(41)
(42)
(43)
(44)

Data lines contained into 'foo' are processed according to macro directives.

there
there
there
there

there
there
there
there

there
there
there
there

are
are
are
are

are
are
are
are

are
are
are
are

several
several
several
several

several
several
several
several

several
several
several
several

ways
ways
ways
ways

ways
ways
ways
ways

ways
ways
ways
ways

to
to
to
to

to
to
to
to

to
to
to
to

Output is located into file 'foo.out":

(1)
(2)
(3)
(4)

(11)
(12)
(13)
(14)

(21)
(22)
(23)
(24)

(31)
(32)
(33)
(34)

(41)
(42)
(43)
(44)

there
there
there
there

there
there
there
there

there
there
there
there

there
there
there
there

there
there
there
there

are
are
are
are

are
are
are
are

are
are
are
are

are
are
are
are

are
are
are
are

several
several
several
several

several
several
several
several

several
several
several
several

several
several
several
several

several
several
several
several

ways
ways
ways
ways

ways
ways
ways
ways

ways
ways
ways
ways

ways
ways
ways
ways

ways
ways
ways
ways

to
to
to
to

to
to
to
to

to
to
to
to

to
to
to
to

to
to
to
to

say
say
say
say

say
say
say
say

say
say
say
say

say
say
say
say

say
say
say
say

say
say
say
say

say
say
say
say

say
say
say
say

nan
.
nen
np

"AH'
it
"AH"

AH
AH
it
N

"AH'
"AH'
Tig!
TUAgT !

oQwp

"AH"
"AH"
nig"
LR N: Gl

MAC User's Guide User's Guide

35

Errors and Warnings

Errors are causing immediate MAC abnormal termination. Complete error location is provided
with line number and file name (hierarchical).

Warning messages may be disabled by using option "-g/uiet/" on command line.

Example of Command Line error

PNV

% MAC '/user/John/Doe' -d foo

[Command Line]

MAC error - missing parameter -d foo ?

%

Example of error generated by a bad definition of a macro at line 8 of file 'foo.include’, called
by a "#include" directive at line 6 of input file '/user/John/Doe’'

AR Y

% MAC2

line[6]
line[8]
MAC error - regular expression expected

%

' /user/John/Doe' > foo.out

[/user/John/Doe]
[foo.include]

List of warning and error messages

(1)
(2)
(3)
(4)
(5)
(6)
7
(8)

MAC
MAC
MAC
MAC
MAC
MAC
MAC

MAC

error

error

error

error

error

error

error

error

XXXX identifier is missing

echo file already defined

arc cosine of number outside [-1, 1] is forbidden

arc sine of number outside [-1, 1] is forbidden

attempt to divide by 0
attempt to loop include files: 'XXXX'
attempt to rewrite existing echo file:

casting a list is forbidden

'XXXX!'

MAC User's Guide User's Guide

36

(9) MAC error - dyadic operator expected

(10) MAC error - empty value cannot be evaluated

(11) MAC error - expected valid expression following '!='

(12) MAC error - expected valid expression following '%'

(13) MAC error - expected valid expression following '&&'

(14) MAC error - expected valid expression following '*'

(15) MAC error - expected valid expression following '+'

(16) MAC error - expected valid expression following '-'

(17) MAC error - expected valid expression following '/'

(18) MAC error - expected valid expression following '<'

(19) MAC error - expected valid expression following '<='

(20) MAC error - expected valid expression following '=='

(21) MAC error - expected valid expression following '>'

(22) MAC error - expected valid expression following '>='

(23) MAC error - expected valid expression following '#'

(24) MAC error - expected valid expression following '||'

(25) MAC error - file name is missing

(26) MAC error - if type directive is missing

(27) MAC error - illegal TYPE identifier <XXXX>

(28) MAC error - logarithm of number lower or equal to 0 is forbidden
(29) MAC error - maximum depth of file inclusion reached: NNNN
(30) MAC error - maximum number of macros reached: NNNN

(31) MAC error - memory allocation error

(32) MAC error - missing filename for -e

(33) MAC error - missing macro definition -d XXXX ?

(34) MAC error - missing macro definition -f XXXX ?

(35) MAC error - missing macro definition -i XXXX ?

(36) MAC error - missing macro definition -r XXXX ?

(37) MAC error - missing macro identifier -d ?

(38) MAC error - missing macro identifier -f ?

(39) MAC error - missing macro identifier -i ?

(40) MAC error - missing macro identifier -r ?

(41) MAC error - no input specified, verify command line

(42) MAC error - power of negative number is forbidden

(43) MAC error - problem to open echo file (MODE): 'XXXX'

(44) MAC error - problem to open input file (MODE): 'XXXX'

(45) MAC error - regular expression expected

(46) MAC error - string too long, unable to concatenate (max = 512)
(47) MAC error - too many endif

(48) MAC error - too many prefixes

(49) MAC error - try to break into elements an empty macro <XXXX>
(50) MAC error - try to break into elements an undefined macro <XXXX>
(51) MAC error - try to cast to fix an empty macro <XXXX>

(52) MAC error - try to cast to int an empty macro <XXXX>

(53) MAC error - try to cast to real an empty macro <XXXX>

(54) MAC error - unable to build list definition, string too long (max = 512)
(55) MAC error - unable to evaluate expression

(56) MAC error - unbalanced if/endif

(57) MAC error - unmatched parenthesis into expression <XXXX>

MAC User's Guide User's Guide o 37

(58)
(59)

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(66)
(70)
(71)

MAC

MAC

MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC

MAC

error -

error -

warning
warning
warning
warning
warning
warning
warning
warning
warning
warning
warning

warning

unrecognized option: XXXX

waiting for if or endif

- disabling echo mode as standard input is not processed
- "#XXXX' is not a legal MACro directive

- attempt to remove an undefined macro <XXXX>

- macro <XXXX> is not defined

- macro <XXXX> is already a list

- macro <XXXX> was already defined

- try to cast to fix an undefined macro <XXXX>
- try to cast to int an undefined macro <XXXX>
- try to cast to real an undefined macro <XXXX>
- try to freeze an undefined macro <XXXX>

- try to melt an undefined macro <XXXX>

- precision of fix number = NNN reduced to 9

MAC User's Guide User's Guide

38

Appendix A: MAC Usage

Simple MACro expander, Version DOS V3.03, WARW YLD FRTH JYCR, October 06 1992

Usage: MAC [option..] [pathname..]

<option>:

-u[sage] : Usage on stdout.

-h[elp] : Help on stdout.

-s[tdin] : Use MAC as filter accepting standard input (e.g. pipe).
-e[cho] 'pathname' : Echo macros directives from stdin into file. (¥*)
-d[efine] nam 'val' : Equivalent to directive #define nam val. (*)

-i[nt] nam 'expr' : Equivalent to directive #int nam expr. (*)

-r[eal] nam 'expr' : Equivalent to directive #real nam expr. (*)

-f[ix] nam 'expr' : Equivalent to directive #fix nam expr. (*)
-p[refix] nam : Prefix Mode, declare prefix of macros used outside directives.
-v[erbose] : Verbose Mode, detailed trace to stderr.

—c[omment] : Comment Mode, send MAC comments to stderr.

-q[uiet] : Quiet Mode, remove warning messages.

-1[ine] : Line Mode, keep output and input lines numbering equal.

(*) On command line, it is recommended to enclose value or expression between
SINGLE quotes. They are mandatory if value or expression has more than one

word, contains weird symbols...

<pathname>:

Pathname of ASCII file(s) to be expanded sequentially (last in is first processed).

Standard input is always processed after the process of these files is completed.

MAC User's Guide User's Guide * 39

Appendix B: MAC Help

Simple MACro expander, Version DOS V3.03, WARW YLD FRTH JYCR, October 06 1992

Usage: MAC [option..] [pathname..]

<option>:

—u[sage] : Usage on stdout.

-b[uilt] : Built information on stdout.

-h[elp] : Help on stdout.

-s[tdin] : Use MAC as filter accepting standard input (e.g. pipe).
-e[cho] 'pathname' : Echo macros directives from stdin into file. (*)
-d[efine] nam 'val' : Equivalent to directive #define nam val. (*)

-i[nt] nam 'expr' : Equivalent to directive #int nam expr. (*)

-r[eal] nam 'expr' : Equivalent to directive #real nam expr. (*)

-f[ix] nam 'expr' : Equivalent to directive #fix nam expr. (*)
-p[refix] nam : Prefix Mode, declare prefix of macros used outside directives.
-v[erbose] : Verbose Mode, detailed trace to stderr.

—-c[omment] : Comment Mode, send MAC comments to stderr.

-q[uiet] : Quiet Mode, remove warning messages.

-1[ine] : Line Mode, keep output and input lines numbering equal.

(*) On command line, it is recommended to enclose value or expression between
SINGLE quotes. They are mandatory if value or expression has more than one
word, contains weird symbols...

<pathname>:

Pathname of ASCII file(s) to be expanded sequentially (last in is first processed).

Standard input is always processed after the process of these files is completed.

Operations recognized by the MACro expander during arithmetic evaluation:

MAC User's Guide User's Guide

* 40

+ - *x / 5 A

> < > <= = 1= ! || &&

(sin()) (cos()) (tan()) (asin()) (acos()) (atan())

(exp()) (log()) (loglO()) (sinh()) (cosh()) (tanh())
(abs()) (floor()) (ceil()) (round()) (sign())

Inside processed files,

#define nam [val]
#default nam [val]
#undef nam [nam..]
#int nam [expr]
$#real[dig] nam [expr]:
#£fix[dig] nam [expr]
#ask nam [val]

#msg [val]

#cat nam [val..]
$#freeze nam [nam..]
#imelt nam [nam..]
#if expr

#ifdef nam [val]
#ifndef nam [val]
#else [comment]
#endif [comment]
#include val
#insert val

#exit [val]

#quit [val]

#abort [val]

[val]

#* [comment]

directives recognized by the MACro expander:

: Macro definition.
: Macro definition, if macro was not yet defined.

: Undefine the macro[s].

[Macro definition with] arithmetic evaluation, casting to int.
[Macro definition with] arithmetic evaluation, casting to real (scientific).

[Macro definition with] arithmetic evaluation, casting to real (fixed precision).

: Macro definition by [question 'val' and] answer from user, if not yet defined.
: Send message 'val' to stderr.

: Concatenate 'val..' into first macro.

: Protect content of macros from processing.

: Unprotect content of macros from processing.

: Execute if block when after arithmetic evaluation, 'expr' is not 0.

: Execute ifdef block when 'nam' is defined [equal to 'val'].

: Execute ifndef block when 'nam' is undefined [or not equal to 'val'].
: Else block. ['comment' ignored.]

: End of conditional block. ['comment' ignored.]

: File to be included (pathname between single quotes).

: Data file to copy without processing (pathname between single quotes).
: Exit from current file. [Send message 'val' on stderr.]

: Normal MAC termination. [Send message 'val' on stderr.]

: Abnormal termination. [Send message 'val' on stderr.]

: MAC single line comment. [In comment mode, 'val' is traced on stderr.]

: MAC single line comment. ['comment' ignored.]

- MACro expander advanced features:

#list nam

[@..]nam

- Debug oriented macro
#verbose [val]
#imacro [nam..]
#tag [val]

- Debug oriented macro

#skip [expr]

#stop [val]
#status [val]

: Declare existing macro as a list and split it into elements.

: Indirection using symbol 'Q' ahead macro name 'nam'.

directives (normally processed) :

: Toggle verbose mode On|Off [or set/reset if value is (not) 0].
: List all macros on stderr [or macros by name 'nam..'].

: Define file tag name 'val' of currently processed file.

directives (unconditionally processed) :

: Toggle Skip Mode On|Off [set/reset if 'expr' is (not) O0].
: MAC normal termination. [Send message 'val' on stderr.]

: Current status of MAC on stderr. ['val' is a title.]

MAC User's Guide User's Guide - M

Predefined macros:

sV
$D
SF
$T
SN

Quotes in MAC:

'text'
'text'
'text'
“text®

"text"

(option)
(directive)
(data)
(dir & data)

(dir & data)

: Current version of MAC (DOS V3.03).
: Current time and date at the beginning of the process.
: Current file name.

: Current file tag name (default: file name).

: Empty string.

: Field delimiters, quotes are removed by UNIX.

: Determine field, quotes are removed in output.

: No effect. Quotes remain.

: Text unprocessed by MAC, quotes are removed at output.

: No effect. Quotes remain.

Valid macro identifier in MAC:

First character

Other characters

:A..Z a..z $ or _

:A..Z a..z 0..9 [1 $ or

MAC User's Guide User's Guide

* 42

Language PUrPOSE.......cccuiiiiiiiiiriiisissssssssssss s s s s s s mmmansnn s 2

€] X7 7 | 3
Convention Used in this Guide..........ccccciiiiimiiiniin . 4
MAC Command LiNe........coieiiiieiiinsrs s sss s s sssssssnns 5
MAC [0ption..] [fILENAME.. [...ecuieieriieieeiieieeiee ettt et et e e st eeesee e tessae s eessesseensesseensesseenseensseesnsaeenes 5
(0070014 0 =T o I I T 7= 0. o3 1 o o T 6
SUL [SAEET . veeureenteeeteetteste et estte e bt e sttt e beeette e be e hae et e e bt e aab e e tteen bt e teeea b e e aaeeate e baeenbeeateeenbeenbeeenbeentaeenaeenteennnens 6

Usage on standard OULPUL.........couiiiiiiiieieeee ettt st sttt sb et saee e saee e 6

2D [UILE] ettt b et bbbt b et bt h bbbt e b nheebeen 6

Built information on standard OULPUL...........cceeririeriiere e 6

S 1 (<]) USSR 6

Help on standard OULPUL..........cciiieriiiiereeeerie ettt sseesbeseaesseesaesseessesseenseennns 6

=8 [N ettt ettt et ettt e b e tt e heera e b e et b e bt e s b et e eabeereesbeert e beereeeheenaesteersesaaennseeenres 6
Standard INPUL fIIEET........eooieiiieiece ettt e esbe e baeebeetbeeeeeneraaeean 6

-€ [Cho] file PAthNAIMIC.ooiiiiiiii ettt sttt st e e et et e et e e st e e et e eanees 7

Echoes macros from standard input into file............ccoeoieiieiiinieiinieeeee e 7

~d [EfINE] NAM VAL ...ooiiiiiiieiie ettt ettt e st ebe e e tb e e beeeabeebeesabeenseesaseesseeaseensaaeeeannneas 7
Equivalent to directive "#define nam val"............c.ocoeviirieniiiieniceeeee e 7

1 [IIE] DMAIML @XPT.uevtiiieitietiete et et et ete et e et ebe bt esbeeseesseesbesbeessaseesseeseesseeseessesssesseesseseessaseessenssessenssensenseanns 7
Equivalent to directive "#int NAmM @XPI.......ccvieevieeiieiieerieeieeeeeieesteeeteeteesteesbaeeeenerbeeesannneeas 7

=T [@AL] MMAIM EXPT ...ttt ettt ettt et e e et e st et e e s e eb e et e e st e bt en e e bt ea e e bt en s e bt entenneenteeaeeennes 7
Equivalent to directive #reald Nam eXPr.........cccoeveeiererierieiereeie ettt 7

0. R o4 o) SRR 7
Equivalent to directive "#fiX2 NAM EXPI".....cciviiriieieeieiieeeie ettt aesrae e saaeesnaee s 7

SV [IDOSE] ettt ettt ettt b te e b e et e e be e st e heera e teerbeeaeerbe st enbeestebeeerbeeenteeenres 7
Verbose mode enforced, trace to standard error OULPUL.........cc.eeveeeieerieriiereeeie e 7

T L3 L 1 PSSP 8
REMOVE WarNing MESSAZES.eeverveeieerrieteesieteeeieteeseesteeeesseensesseesesseesesseesesseensesseesnseesnneeensnes 8

2L LNE ettt ettt e ettt e b e e tb e e heeetae e bee et e e beeetbeebaeeabe e baaeabeebeesabeentaeetreetaenanees 8

Replace macros by blank lines in data OULPUL...........ceoveevieiieiienieieeieie et 8

2D [TEIIX] MAIML ...ttt ettt ettt et et e b e e st e s b e etaesbeeseesseesaesseessesseessesssesseenneeessseennseeenseas 8

Defines prefix for macro identifier..........ocvieiieiieiiieiecic e e 8

o K0 111013 11 OSSP 8
Comment line traced on standard eIror OULPUL..........ceceririrerertirtenieieeeieeeeee et 8

[FILENAIME..] veeeiieiiieie ettt ettt et e et e e bt e ettt e tbeeabeebeeeabeeseesebeessaeesseesaesaseessesaseesaeeessseaennns 8

MAC Predefined MaCIOS.......cccocernnmrmnnismeinnsssnsse s sssssss s s s sssss s s s 10

MAC User's Guide User's Guide » 43

1Y/ = Tod (o T e LT (=03 LY== 11

FANCIUAE VAL....c.eiiiiiiiiiicic ettt ettt ettt et b et et eae st ne 11
FANSEIT VAL ..ottt ettt b e n e 11
HACTING NAM [VAL]...eetieitiieieeeieeee ettt e ete et e st e e bt e sabeesteeesae e teessbeeseessseasssaasseessnsseeaeasssseenns 11
HAefault NAM [VAL.....oiiiiiiiieieceeeee ettt ettt b e e bt e b e e te e b e eseesbeestesaeesaeentseesnreeanreens 12
HUNAET NAM [NMAML. J.o.eeiiiiiiiiciicce ettt et e et e e teesbeeeteeeebeesseeaseestaaeaseesaeeeensseeesanssaeeens 12
301U 1100 B -4 o SRR 12
Hreal [AIZ] NAM [EXPI] erieriiirieiieieieeeeti et et ete st etesteetesteesbesteesseeseesseeseessesssesseeseesseassesseessesnsseesssessnseens 12
FHIX [A1Z] NAM [EXPI . rentieniiiieiieieeteet et see sttt et e et et estte st esbe st ensesseensesseessesseensesseensesnsensesnsensennsenseeessens 12
HCAL NAIM [VALL. |veeieieeitieiie ettt ettt et e e bt e st e e teeette e beessbeesseessbeesaeesseesseessaessseassaesssenssaesssannsenan 12
HASK NAIM [VAL]...eeiiiieieiicieeeeee ettt ettt et a e et esb e b e esb e beesbeeteesbeete e b e eraebeereeenraeentreas 12
HITEEZE NAM [MAIML. J...viiiiiiiii ittt ettt e et e st eeeteesteeebe e teeebeesaseeaseessseesseessseesseeseesaseenseenns 13
HMEIE NAM [NAIMNL. |.eeetieeiiieiieeie ettt e et e et e et e e tee st e e teessbeesseeasseesseesssaeseesssaasssaasseesnsseeasasssseenns 13
3 4) ST TR U TP UUPSTRPP 13
FTAET NAIM [VALT...eeiiiiiii ettt ettt te et e e be e e taeebeeseaeeaseeesseenseeseeeaseeasseeasaeaanns 13
HNACT NAM [VAL].eeeiieiiie ettt e st e e te e et e e taeesbe e beessbeeseessseesssansseesssaaeean 13
HEISE [COMIMEIIL ... eiutiiiiiiieieitieieet ettt ettt e et e et e teeseesbeesb e beesbesseesseeseesseeseessesseessesssesseessesseessseesnseens 13
HENAIT [COMIMENT]......oiitiiiiiiiii ettt ettt e e e et e e b e ebeeeabeetseeabeessseenseesseeaseesseeaseseensseeeans 13
37yl AV 1 | ST 14
HEXIE [VAL .t eeetiteeiietiete ettt ettt ettt ettt et et e e s b e et e e teesbeeteesbeeseesbe e st e beereesbeera e beesbeebeesbe bt enbeeteeennreennreans 14
010N L N2 1 TSRS 14
2221010 w71 1 OSSPSR 14
FESEOP [VALT..veevieteeeieete ettt ettt ettt et e et b e et e st e e st e s beessesaeesbesseesbeeseesbeestesbeessanbeeraeeneeenaeeenneeenneeens 14
e T o 4 01 o PSP 14
e L oo TS o3:q) o PSRRI 14
FHNACTO [TAIML. Jo.uveeeteeiiiesiieeteesiteetee st e eteeeteeateesebeesteesaseensaessseenseesnsaenseessseensaessseensseanseensnesnseensseeesanssseesans 14
FESTALUS [V .veeiereeriiiiie ettt ettt ettt et e et e e te e e b e eteeeabeebaeeabe e baeeaseebeeeabeesaeeabeeasbeeabeeatbeeeenraaeeas 15
FHE VALt bbbt b et b et b et b ettt sh e et et 15
FH [COMUMCII . .vvevieerieeieteeeeeteette st e e steestesteesbesteesbeeseesseessesseesaesseeseasseessesseessesseessasssessessaasseessseessseeensseans 15
2T Y TSP SRPR 15
FHLIST TMAIML ...ttt ettt ettt e a et b e bttt b et et ettt ea st eb e bt bt ae et b et et eae e eaneea 15
Functions and eXpresSSiONS........cccceeeciiiiiriimmnmemsssssss s rrrssnssssssssss s s s s rsssssssssssnnssssrnnas 16
Functions recognized by the MACIO eXPander...........cooiiiiiiiieniiiienieeese et 16
GIOUPING SUD CXPIESSIONS. .. ecuvivierriiereteeiterteetesteesseteessesseessesseessesseessesssessesssessesssessesssessesssessseesssesassseenns 16
MAC MONAAIC fUNCLIOMNS.eeuieiieeieiieteeie ettt ettt eete st et e st enbesseesseeseensesseesesneessesnsesseensessennsensens 16

MAC User's Guide User's Guide e 44

MAC DYAAIC fUNCHONS.vetieiieitieiieiieieetesteettesteete st eaesseessesseessesseessesssessesssesseassensesssessssessseesseennsseens 17

IMAC TNAITECHION. ...ttt ettt ettt ettt et e st e st e st e et e e st eneeeseenseemee st eneesseeneesseensesseensesneeennseenn 17
Representation of strings and NUMDETS.ccoiiiiiiiiiiii et e 17
TEXE. ettt ettt e et h et h et bttt s h et bttt s h ettt b e et e bt e b et e nabeeeabneenen 17
Numbers accepted DY MAC........couiruiiiiiriieteete ettt st ettt et ettt e e e naeen 17
SYMDOLS 1ESETVEA 10 MACcouiiiieiiiieteeet et ettt s b et sttt sb et e ee e bt e bt e e saneeenee 17
(25 €= 10 0T 01 =T o)V o o T o= 18
Example 1: usage and help (OPLION).......c.ccueeiirieiirieie ettt st see e nneennee s 18
Example 2: standard input, echo, VerboSe (OPLtION).......c.eerveeiueeiieeiieeriieeieerteereeseeereesieeereessnesseessneees 18
Example 3: define, int, real, fiX (OPTION).....ccueriirciiriieiesiieiiettete ettt e e sre s e sseensaeeneseas 19
Example 4: quiet MOAE (OPION)......eouieiirieieiierie ettt ettt ettt et ete et e saeeneesaeeneesseeneenseenseenees 20
Example 5: Prefix (OPTION)....ccuiicieiiie ettt ettt te et e st e e teeeste e baeesbeetaessbeesseesnseessseenssseaenns 20
Example 6: blank line (OPTION)........ccueeieriiieerieiieriesieteetesieetesteestesseessesseessessaessesssessesssessesssessesssensenseens 21
Example 7: comment MOAE (OPTION)......eeruieieriieierieeiestieieeteeteetee st eeeeseesseessesseesseseeesseensesseensesseenseeenneens 21
Example 8: input files (COMMANA 1INE).......c.ecoieriiiriiiiierieeiteree et ere e see e aesessaeee s 21
Example 9: predefined MACTOS.ccvevieiieieiicieie ettt ettt te et eereesesseessessaesseessesseesnseas 22
Example 10: define, default, undef, int, real, fiX........ccooeiriiriieiieee e 23
Example 11: inCIUA@ aNnd INSETt........eeiuieriieeiieiiieeieesite ettt ettt et e e aeesteesbeesaeessbeessaessseessaeeenssseaeens 24
EXample 12: CONCAIENATION.ceevieeieiieeierieeierteeie st etesteestesseessesseessesseeseeseesseassesseassessesssesssessnseeensseens 25
Example 13: ask and MeESSAZE.........eeiuirieriieieitieieeee ettt ettt sttt ettt ettt n e e ennee s 26
Example 14: freeze and MEIL..........coociieiiiiiiieiieeii ettt ettt eete e e sbeeseeesebeessseenseessnaeeeas 26
Example 15: if, else, endif, ifdef, ifndef..........c.cccoeviiriiii e 27
51001 o) (S G- G TSP 28
EXAMPIE 177 QUIT..coutieiiieiieeie ettt et e e et e s e et e e sebe e seeesbeesaeassaessaesnsaenseesnseensseenssaaesansseeesnn 29
5 100 o) (S A1 To) o ARSI 29
D51 u0] o) (S R 1o o TSRS 29
25 €201 0] (S S (a TSP 30
EXAMPIE 212 VEIDOSEC. ..evivieiiiiiieiieieie sttt ettt ettt et ete et e steessesseesbesseesseessesseesseseassensaessenseenseeenssens 30
EXample 22: MACIO LISINZ. .. .eeeiriieieiieie ettt ettt ettt e st e e st eteeaeeesneeesnteeeneeeaneeens 31
EXAMPIE 231 MAC STATUS. .. .eeiveeerieieeeieetieeteeeteesteesteesteestaeeaeeteessseenseessseessseesseessseenseesseessnssseessnssseesans 32
Example 24: active and passivVe COMIMENL............ccveruerrerieerieererreetesseessesseessessaessesseessessaessesssessesssessenses 32
EXaMPIE 25: tAG NAIMNC. ...c.eeuieiieiieieeiiecteete ettt ettt et ettt este st e se e st e s beestesseenseeseenseeseenseeseenseenneeanneenn 33
EXamPIe 26: INAITECHION. ... cccuvieitieeieeiieeteetie st estte et esteeeaeeteeebeesteesebeessaessseessseenseeseesnsaesssesnseesenssseesens 33
Example 27: teXt ManiPUIAtIONS.cc.cccveruirieriieieriietestteteeteeteeteesseeseesesssessesssessesssesseessesseessesseensesenssens 34
Errors and Warnings........cccccoiiiimesmmnniinsssssss s ssssssssssss s s s sssssssss s s s s s s s sssnnnns 36

MAC User's Guide User's Guide e 45

List of Warning and ITOT MESSAZES.cvervieeerrieierreeierteeterseessesseessesseesesseessesseessesssessessaessesssessesssessessns 36

AppendixX A: MAC USQQEe......ccuurmmmmmmmmmmmmmmmmmmmmnmmmssmmssmsssssssmssmmssssssssssssssssssssnsnnnssssssssses 39

Appendix B: MAC Help

MAC User's Guide User's Guide * 46

	Language Purpose
	Glossary
	Convention Used in this Guide
	MAC Command Line
	MAC [option..] [filename..]

	Command Line Options
	-u [sage]
	Usage on standard output.

	-b [uilt]
	Built information on standard output.

	-h [elp]
	Help on standard output.

	-s [tdin]
	Standard input filter.

	-e [cho] file_pathname
	Echoes macros from standard input into file.

	-d [efine] nam val
	Equivalent to directive "#define nam val".

	-i [nt] nam expr
	Equivalent to directive "#int nam expr".

	-r [eal] nam expr
	Equivalent to directive #real6 nam expr".

	-f [ix] nam expr
	Equivalent to directive "#fix2 nam expr".

	-v [erbose]
	Verbose mode enforced, trace to standard error output.

	-q [uiet]
	Remove warning messages.

	-l [ine]
	Replace macros by blank lines in data output.

	-p [refix] nam
	Defines prefix for macro identifier.

	-c [omment]
	Comment line traced on standard error output.

	[filename..]

	MAC Predefined Macros
	Macro directives
	#include val
	#insert val
	#define nam [val]
	#default nam [val]
	#undef nam [nam..]
	#int nam [expr]
	#real [dig] nam [expr]
	#fix [dig] nam [expr]
	#cat nam [val..]
	#ask nam [val]
	#freeze nam [nam..]
	#melt nam [nam..]
	#if expr
	#ifdef nam [val]
	#ifndef nam [val]
	#else [comment]
	#endif [comment]
	#msg [val]
	#exit [val]
	#quit [val]
	#abort [val]
	#stop [val]
	#skip [expr]
	#verbose [expr]
	#macro [nam..]
	#status [val]
	## [val]
	#* [comment]
	#tag [val]
	#list nam

	Functions and expressions
	Functions recognized by the MACro expander
	Grouping sub expressions
	MAC Monadic functions
	MAC Dyadic functions
	MAC Indirection
	Representation of strings and numbers
	Text
	Numbers accepted by MAC
	Symbols reserved to MAC

	Examples by topics
	Example 1: usage and help (option)
	Example 2: standard input, echo, verbose (option).
	Example 3: define, int, real, fix (option).
	Example 4: quiet mode (option).
	Example 5: prefix (option).
	Example 6: blank line (option).
	Example 7: comment mode (option).
	Example 8: input files (command line).
	Example 9: predefined macros.
	Example 10: define, default, undef, int, real, fix.
	Example 11: include and insert.
	Example 12: concatenation.
	Example 13: ask and message.
	Example 14: freeze and melt.
	Example 15: if, else, endif, ifdef, ifndef.
	Example 16: exit.
	Example 17: quit.
	Example 18: abort.
	Example 19: stop.
	Example 20: skip.
	Example 21: verbose.
	Example 22: macro listing.
	Example 23: MAC status.
	Example 24: active and passive comment.
	Example 25: tag name.
	Example 26: indirection.
	Example 27: text manipulations.

	Errors and Warnings
	List of warning and error messages

	Appendix A: MAC Usage
	Appendix B: MAC Help

