

Transfer Functions,

Modeling and Simulation
using the SARC Schematic Editor

(Running on Windows OS, 64 bits)

Yves Leduc | July 2018

PAGE 1

Introduction

The SARC Schematic Editor, the symbolic computation of the transfer

functions and the SARC simulations are the work of Jacques Mequin.

The Napa Compiler and Package is the work of Yves Leduc.
 http://www.borogoves.eu/NAPA_RELEASE_305e/

Maxima is a descendant of Macsyma, the legendary computer algebra

system developed in the late 1960s at the Massachusetts Institute of

Technology. http://maxima.sourceforge.net/

The SARC Schematic Editor is the entry point to describe linear(ised) electrical circuits.

It is closely linked to the symbolic programming tool Maxima which is used to compute, in

the Laplace Domain, the transfer functions described by this editor and to mixed-signal

simulations with the Napa package.

Maxima can be used to postprocess further the transfer functions. The functions

produced by the pair SARC Schematic Editor/Maxima can be inserted in NAPA netlists.

The Napa Compiler is a compiler of netlists producing ad-hoc cycle-based ANSI-C

simulators of mixed signal circuits. It can host continuous domain models described in the

Laplace domain thanks to SARC (Semi Analytical Recursive Convolution).

The users’ guides of these tools are not the object of this paper and can be found on the

‘NAPA Vineyard’ Windows Panel created during the installation of the Napa package :

 Open SARC Editor

http://www.mit.edu/
http://www.mit.edu/

PAGE 2

1. AN EXAMPLE OF SCHEMATIC

(These examples use netlists located in directory ‘/Simulate/NapaDos/Hdr/Max’)

We will use a simple filter to illustrate how to build a schematic and use it to produce

transfer functions. We will limit our ambition for the moment to the simplest process.

This is the schematic of a Sallen & Key Filter. We have chosen in this example to limit

the description to the main elements: 2 resistors, 2 capacitors, 2 independent voltage

sources and 1 voltage-controlled voltage source selected in the right menu in the

‘SARC.lib’ as respectively ‘R’, ‘C’, ‘V’ and ‘E’.

By a double click on an element, it is possible to enter its name and add some properties.

PAGE 3

All constant sources (‘V’ or ‘I’) are by default the input of the circuits. We must indicate

the output(s) we want to analyze: voltages or currents. (It is possible to output power and

energy but only in a simulation context not for the transfer function)

By a single click on an empty zone of the schematic, a menu will appear, and we will select

the item ‘Page SARC setup’

We then indicate the output(s) we want to compute, here the voltage of node ‘Out’. We

choose to consider the offset ‘Offs’ as a parameter by declaring it as an ‘INTERN’. We

select to produce a transfer function.

More details can be found in the ‘Schematic Editor for SARC Card’ and ‘Maxima for

SARC Card’ documentations accessible from the ‘NAPA Vineyard’ Windows panel

(represented page 1).

PAGE 4

It is important to note that a simple ‘Save’ is automatically producing a textual netlist

(.mac) and a document (.pdf). This is a guarantee that schematic, netlist and

documentation are always synchronized.

It is now time to produce the transfer function!

In the menu ‘File’, we will select ‘Execute SARC Maxima’.

After a few seconds, a Maxima session starts and the transfer function automatically

computed. Wait for the message ‘ >>> Normal termination ’.

PAGE 5

Here is the result:

𝟏 𝒑𝒓𝒐𝒑𝒆𝒓 𝑽(𝑶𝒖𝒕)/𝑽𝒊𝒏 =
𝑨𝒗

(𝑨𝒗 + 𝟏)𝑪𝟐𝑪𝟒𝑹𝟏𝑹𝟑|𝐬|𝟐 + ((𝑨𝒗 + 𝟏)𝑪𝟒𝑹𝟑 + ((𝑨𝒗 + 𝟏)𝑪𝟒 + 𝑪𝟐)𝑹𝟏)|𝐬| + 𝑨𝒗 + 𝟏

The results are stored in Maxima variables XFER[1] where ‘1’ is the number in front of the

output. The 2nd transfer function represents the effect of the ‘INTERN’ input(s).

We can use Maxima to compute the transfer function for an ideal gain of the amplifier by

applying a limit():

We can also use Maxima to postprocess the results to get the sensitivity of the transfer

function to the value of an element, here the sensitivity to R_1:

PAGE 6

We can also obtain the DC transfer function by applying a limit. The Laplace variable is |s|.

As expected, we can see that the DC gain of a Sallen & Key filter is about 1.

As it could be tedious to perform the same postprocesses again and again, we will add a

few properties directly in the schematic.

PAGE 7

2. AN EXAMPLE OF SCHEMATIC, USING PROPERTIES

We use here the component properties to assign specific values to the elements.

By double clicking on a component, we can fill its properties. The syntax uses brackets [].

We assign, for example, the same symbolic value for the gain of each amplifiers ‘A_v’.

PAGE 8

We need now to declare these new variables by selecting the component ‘globals’ in the

‘SARC.lib’ of menu on the right, instantiate it in the schematic, it is an empty rectangle,

double click on it to access to the menu, and fill.

PAGE 9

The 3 outputs are declared in the ‘Page SARC setup’ and the transfer function is selected.

In the ‘File’ menu, on the top, click on the ‘Execute SARC Maxima’ to start the Maxima

process.

PAGE 10

The 3 transfer functions are produced. There is no need a postprocess to assign the values

to the components. It is important to note that the complexity of the denominator is

related to the complexity of the circuit.

The Maxima variables are respectively XFER[1], XFER[2], and XFER[3].

Again, we can use Maxima, to process more. Here we compute the gain at infinity of the

high pass output (transfer function number 2 of the Maxima output):

It is possible to specify the postprocessing in the schematics.

PAGE 11

3. AN EXAMPLE OF SCHEMATIC, USING PROPERTIES AND POSTPROCESSING

In the previous schematics, we insert post processing in the schematics. Clicking in an

empty space of the schematics, we access the ‘SARC setup page’. In the ‘User code

Maxima’ field, we can insert Maxima code.

In addition to the standard Maxima functions, a few functions are currently available.
(located in “/Simulate/MaximaDos/Functions” directory)

Here is the postprocessing code we have chosen; the syntax is the syntax of Maxima.

PAGE 12

And the results are:

Again, we can ‘play’ with the solutions and use the plain symbolic capability of Maxima.

PAGE 13

4. FROM SYMBOLIC RESULTS TO NUMBERS AND BODE PLOTS

After the symbolic analysis of transfer functions, it could be interesting to apply numerical

values to evaluate the solutions.

In this example, we apply symbolic values for parameters and add numerical values to the

‘globals’ parameters and ask for bode plots.

To modify the ‘globals’ parameters, a double click on its instantiation and edit.

PAGE 14

We edit the ‘SARC page setup’ and add a few Maxima code to apply the numerical values

and produce the Bode plot of the first transfer function.

Here are the results of Maxima, the 3 transfer functions are now numerical.

PAGE 15

A Bode plot is then produced by Maxima:

Another example produces the transfer function of noise sources, resistors and amplifier.

PAGE 16

The setup for transfer functions and Bode plots when the gain of the amplifier is infinite.

And the results:

PAGE 17

The Bode plot (noise 1 → output) :

The Bode plot (noise 2 → output) :

The Bode plot (noise 3 → output) :

PAGE 18

5. DO NOT BE TOO AMBITIOUS

Symbolic analysis plays with (smart) manipulations of equations of Kirchhoff.

Examples are in directory ‘/Simulate/Napados/Hdr/Max’. You will notice that this

software handles impressive problems. But this is a real challenge to handle too complex

schematics, there is a limit in the complexity.

It is time to compute your first transfer function.

Open the ‘Sarc Schematic Editor’ from the ‘NAPA Vineyard’ panel

 Open (or create) a schematic…

PAGE 19

And enjoy !

PAGE 20

6. MIXED-SIGNAL SIMULATIONS IN TIME-DOMAIN

This SARC Schematic Editor is also the entry point to insert continuous time modules in

the Napa mixed-signal simulator netlist. The same schematics can produce the C code

compatible to this simulator. The simulations are running in the time-domain together

with sampled domain sub-circuits like switched capacitor network and/or digital circuitry.

The technology behind the simulation is SARC (Semi-Analytical Recursive

Convolution) allowing to simulate linear and piece-wise linear circuits. A piece-

wise linear circuit is a linear circuit with a few percussions which change on the fly

the value of some elements while preserving strictly the flux of inductances and

the charges of capacitances.

Napa is a mixed-signal simulator, a teaser is available in the ‘NAPA Vineyard’ panel :

First, we will describe a non-inverting switched-capacitor integrator using the SARC

Schematic Editor. All switches are described as resistors with a symbolic value ‘phi1’ or

‘phi2’. During the simulations the value of these resistors will set to large or small. This

change of value is a percussion which will be handled properly by the SARC algorithm.

Symbolic values of components and ‘globals’ variables are set. The model includes

parasitic capacitances ad offset. We will add slew rate later.

PAGE 21

The schematic is in “/Simulate/Napados/Hdr/Max/SWC_Integrator/Integrator_NI.sch”

This schematic described a piece-wise linear circuit and there is no meaning to compute a

transfer function as it has no utility at this point. We will prefer to output a C code for the

SARC algorithm. We select a ‘GENERATE_MIMO’ instead of a ‘GENERATE_XFER’.

And we start Maxima from the ‘File’ menu on the top of the SARC Editor. Maxima outputs

the matrices A, B, C, and D for the SARC editor.

PAGE 22

Maxima produces also a text file, an ANSI-C header file (‘.hdr’) compatible with the Napa

simulator. The list of inputs, outputs and parameters of this model will be used to create a

Napa cell.

Open the Crimson Editor from ten ‘Napa Vineyard’ panel:

We use here files contained in the package. The explanations concerning the Napa

simulator can be found in the corresponding teaser. We will explain briefly and focus to

start quickly a Napa simulation.

PAGE 23

The header produced by Maxima ‘/Simulate/Napados/Hdr/Max/SWC_Integrator/Integrator_NI.hdr’

This model has 1 input, 3 outputs and 11 parameters. This file is in the directory containing

the corresponding schematic (‘.sch’), netlist (‘.mac’) and pdf files.

We prepare now a cell containing the call of the code produced by Maxima (‘.net’), a data

file containing the numerical values of the components (‘.dat’) and finally the file

containing the simulation ‘(.nap)’.

The cell file ‘/Simulate/Napados/Net/SWC_Integrator/Integrator_NI.net’

PAGE 24

A second file is used to assign values to the components and is instantiated inside the cell.

This data cell file is ‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.dat’

The last file is the netlist of the simulation.

The simulation file is ‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.nap’

The file contains the instantiation of a non-overlapped clock generator, the cell describing

the integrator, a ‘pwl’ cell describing the input, and the location of the data file containing

the parameters. A change in clocks percutes the value of the switches resistances.

The instantiated pwl cell is ‘/Simulate/Napados/Net/Clock/clock12.net’

PAGE 25

The simulation file:

To start the simulation, from the file in the editor, press <left alt> <R>. The simulation

flow is then automatic.

- The ‘Mac preprocessor’ processes the simulation file and creates

‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.temp’.

- From this file, the ‘Napa Compiler’ produces an ANSI-C file representing the

simulator to run.

The ANSI-C file is ‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.c’.

- This file is compiled by the ‘mingw gcc Compiler’.

The executable is ‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.exe’.

Output on screen:

PAGE 26

This executable produces here the simulation outputs in less than 4.2 seconds.

Now, from the file in the editor, press <left alt> <G> to call ‘gnuplot’.

It is possible to configure the plot (icon pointed by the left arrow) or use a preexisting

configuration (right arrow). The configuration was made available for this exercise.

This file is ‘/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.plt’

PAGE 27

And ‘gnuplot’ produces the graphic, 2 views of this output:

No slew-rate? We will add the appropriate model.

PAGE 28

A current source is added in parallel to the transconductance.

A Maxima user’s function ‘APPLY_LIMIT()’ is used to implement the slew-rate model.

The value of the constant current source must be declared as ‘INTERN’, the current ‘I(gm)’

flowing in the transconductance and its voltage command ‘cV(gm)’ must be in

‘OUTPUTS’.

The numerical value of ‘I_max’ is in the data file and transmitted to the SARC function.

PAGE 29

Using the same procedure, the slew-rate limitation appears now in the graphic.

The Napa Simulator has many features to analyze the results. Please consult the related

teaser.

