

Transfer Functions, Modeling and Simulation using the SARC Schematic Editor

(Running on Windows OS, 64 bits)

Yves Leduc | July 2018

Introduction

The SARC Schematic Editor, the symbolic computation of the transfer functions and the SARC simulations are the work of *Jacques Mequin*. The Napa Compiler and Package is the work of *Yves Leduc*. http://www.borogoves.eu/NAPA_RELEASE_305e/

Maxima is a descendant of Macsyma, the legendary computer algebrasystem developed in the late 1960s at the Massachusetts Institute ofTechnology.http://maxima.sourceforge.net/

The **SARC Schematic Editor** is the entry point to describe linear(ised) electrical circuits. It is closely linked to the symbolic programming tool Maxima which is used to compute, in the Laplace Domain, the transfer functions described by this editor and to mixed-signal simulations with the Napa package.

Maxima can be used to postprocess further the transfer functions. The functions produced by the pair SARC Schematic Editor/Maxima can be inserted in NAPA netlists.

The **Napa** Compiler is a compiler of netlists producing ad-hoc cycle-based ANSI-C simulators of mixed signal circuits. It can host continuous domain models described in the Laplace domain thanks to **SARC** (Semi Analytical Recursive Convolution).

The users' guides of these tools are not the object of this paper and can be found on the '**NAPA Vineyard**' Windows Panel created during the installation of the Napa package :

Open SARC Editor

1. AN EXAMPLE OF SCHEMATIC

(*These examples use netlists located in directory* '/*Simulate/NapaDos/Hdr/Max*')

We will use a simple filter to illustrate how to build a schematic and use it to produce transfer functions. We will limit our ambition for the moment to the simplest process.

This is the schematic of a **Sallen & Key Filter**. We have chosen in this example to limit the description to the main elements: 2 resistors, 2 capacitors, 2 independent voltage sources and 1 voltage-controlled voltage source selected in the right menu in the **'SARC.lib'** as respectively **'R'**, **'C'**, **'V'** and **'E'**.

By a double click on an element, it is possible to enter its name and add some properties.

All constant sources ('V' or 'I') are by default the input of the circuits. We must indicate the output(s) we want to analyze: voltages or currents. (It is possible to output power and energy but only in a simulation context not for the transfer function)

By a single click on an empty zone of the schematic, a menu will appear, and we will select the item '**Page SARC setup**'

We then indicate the output(s) we want to compute, here the voltage of node 'Out'. We choose to consider the offset 'Offs' as a parameter by declaring it as an '**INTERN**'. We select to produce a transfer function.

More details can be found in the '**Schematic Editor for SARC Card**' and '**Maxima for SARC Card**' documentations accessible from the '**NAPA Vineyard**' Windows panel (represented page 1).

SARC setup		×
INTERN	Offs	-
OUTPUTS	V(Out)	
next STEP		
FEEDBACKS		
C code		
FEEDBACKS		-
PARMS		
	execution order 1 GENERATE_XFER(I nointern)	
	execution order 0 GENERATE MINO	
	1	
XWISH	PRINTPOLES RUBINOUE I	
User code	· · · · · · · · · · · · · · · · · · ·	5
Maxima		
special control		-
directives		í.
	Cancel OK	

It is important to note that a simple '**Save**' is automatically producing a textual netlist (.mac) and a document (.pdf). This is a guarantee that schematic, netlist and documentation are always synchronized.

It is now time to produce the transfer function!

In the menu 'File', we will select 'Execute SARC Maxima'.

After a few seconds, a Maxima session starts and the transfer function automatically computed. Wait for the message '>>> **Normal termination** '.

Here is the result:

 $1 \, proper \, V(Out) / Vin = \frac{A_v}{(A_v + 1)C_2C_4R_1R_3|\mathbf{s}|^2 + ((A_v + 1)C_4R_3 + ((A_v + 1)C_4 + C_2)R_1)|\mathbf{s}| + A_v + 1}$

The results are stored in Maxima variables **XFER**[**1**] where '**1**' is the number in front of the output. The **2**nd transfer function represents the effect of the 'INTERN' input(s).

We can use Maxima to compute the transfer function for an ideal gain of the amplifier by applying a limit():

We can also use Maxima to postprocess the results to get the sensitivity of the transfer function to the value of an element, here the sensitivity to R_1:

We can also obtain the DC transfer function by applying a limit. The Laplace variable is |s|.

As expected, we can see that the DC gain of a Sallen & Key filter is about 1.

As it could be tedious to perform the same postprocesses again and again, we will add a few properties directly in the schematic.

2. AN EXAMPLE OF SCHEMATIC, USING PROPERTIES

We use here the component properties to assign specific values to the elements.

By double clicking on a component, we can fill its properties. The syntax uses brackets []. We assign, for example, the same symbolic value for the gain of each amplifiers 'A_v'.

We need now to declare these new variables by selecting the component '**globals**' in the '**SARC.lib**' of menu on the right, instantiate it in the schematic, it is an empty rectangle, double click on it to access to the menu, and fill.

SARC globals lib: SARC type: globals	×
Title Globals	Apply
Maxima VAR = EXPRESSIONT	
A_v C R R_g R_f1 R_f2	~
	Cancel OK

The 3 outputs are declared in the '**Page SARC setup**' and the transfer function is selected.

SARC setup		×
INTERN		-
OUTPUTS	V(Outl) , V(Outh) , V(Outb)	-
next STEP		~
C code		
		~
FEEDBACKS PARMS		-
XWISH	PRINTPOLES RUBMODE	
User code		^
Maxima		
	< > > >	
special control		_
directives	Cancel OK	

In the 'File' menu, on the top, click on the 'Execute SARC Maxima' to start the Maxima process.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	🕲 wdMaxima 17.10.0 [run_wdMaxima.mac.wxmx] — 🗖	×
$\begin{bmatrix} 1 \text{ proper } V(0ut1)/Vin = -(A_v^{3} R(R_g+R))/((A_v+1)^{2} C^{2} R_{f1} R_{f2}(R_g+R)((A_v+2) R_g+R) s ^{2} + (A_v+1) C \\ \left[\left(2A_v^{2} R_{f2} + (A_v+2)(R_{f2}+R_{f1}) R_g^{2} + R((A_v^{2} R_{f2}+(A_v+3)(R_{f2}+R_{f1})) R_g+R(R_{f2}+R_{f1}) \right) s + (A_v(A_v(A_v+2)+1)+2) R_g^{2} + R \\ \left[\left(A_v(A_v(A_v+1)+1) + 3 \right) R_g+R \right) \right] \\ 2 \text{ biproper } V(0uth)/Vin = -(A_v(A_v+1)^{2} C^{2} R_{f1} R_{f2}(R_g+R) s ^{2} + A_v(A_v+1) C R(R_{f2}+R_{f1})(R_g+R) s + A_v R(R_g+R))/((A_v+1)^{2} C^{2} R_{f1} R_{f2}) \\ (R_g+R)((A_v+2) R_g+R) s ^{2} + (A_v+1) C \left((2A_v^{2} R_{f2}+(A_v+2)(R_{f2}+R_{f1})) R_g^{2} + R((A_v^{2} R_{f2}+(A_v+3)(R_{f2}+R_{f1})) R_g+R(R_{f2}+R_{f1})) \right) s + \\ \left[A_v(A_v(A_v+2)+1) + 2 \right] R_g^{2} + R((A_v(A_v(A_v+1)+1)+3) R_g+R) \\ 3 \text{ proper } V(outb)/Vin = (A_v^{2}(A_v+1) C R_{f2}(R_g+R) s + A_v^{2} R(R_g+R))/((A_v+1)^{2} C^{2} R_{f1} R_{f2}(R_g+R) s ^{2} + (A_v+2) R_g+R) s ^{2} + (A_v+1) C \\ \left[\left(2A_v^{2} R_{f2} + (A_v+2) (R_{f2}+R_{f1}) \right) R_g^{2} + R((A_v^{2} R_{f2}+(A_v+3)(R_{f2}+R_{f1})) R_g+R(R_{f2}+R_{f1})) \right] s + \\ \left[A_v(A_v(A_v+2)+1) + 2 \right] R_g^{2} + R((A_v^{2} R_{f2}+(A_v+3)(R_{f2}+R_{f1})) R_g+R(R_{f2}+R_{f1})) \right] s + \\ \left[A_v(A_v(A_v+2)+1) + 2 \right] R_g^{2} + R((A_v^{2} R_{f2}+(A_v+3)(R_{f2}+R_{f1})) R_g+R(R_{f2}+R_{f1}) \right] s + \\ \left[\left(A_v(A_v(A_v+1)+1) + 3 \right) R_g+R) \right] \\ = please note that transfer function CANONICAL FORMS can be obtained easily by expressed by to have no coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator highest s power lower low coefficient in front of denominator h$	Fichier Edition View Cell Maxima Équations Algèbre Analyse Simplifier Tracé de courbes Numérique Aide	
$ \begin{array}{l} 3 \ \text{proper V(0utb)/Vin} = (A_v^2 \ (A_v+1) \ C \ R_{f2} \ (R_g+R) \ s + A_v^2 \ R \ (R_g+R) \) \ / \ (A_v+1)^2 \ C^2 \ R_{f1} \ R_{f2} \ (R_g+R) \ (A_v+2) \ R_g+R) \ s ^2 \ (A_v+1) \ C \ (A_v+1) \ C \ (A_v+1)^2 \ C^2 \ R_{f1} \ R_{f2} \ (R_g+R) \ (A_v+2) \ R_g+R) \ s ^2 \ (A_v+1) \ C \ (A_v+1) \ C \ (A_v+1)^2 \ C^2 \ R_{f1} \ R_{f2} \ (R_g+R) \ (A_v+2) \ R_g+R) \ s ^2 \ (A_v+1) \ C \ (A_v+1) \ C \ (A_v+1) \ (A_v+1)^2 \ C^2 \ R_{f1} \ R_{f2} \ (R_g+R) \ (A_v+2) \ R_g+R) \ s ^2 \ (A_v+1) \ C \ (A_v+1) \ C \ (A_v+1) \ (A_v+1) \ (A_v+2) \ R_g+R \ (A_v+2) \ (A_v+1) \ C \ (A_v+1) \ (A_v+1) \ (A_v+2) \ (A_v+2) \ (A_v+2) \ (A_v+1) \ (A_v+1) \ (A_v+1) \ (A_v+2) \ (A_v+2) \ (A_v+2) \ (A_v+1) \ (A_v+1) \ (A_v+1) \ (A_v+2) \ (A_v+2) \ (A_v+2) \ (A_v+2) \ (A_v+1) \ (A_v+1) \ (A_v+1) \ (A_v+2) \ (A_v+2$	$\begin{bmatrix} 1 & \text{proper } V(\text{Outl})/\text{Vin} = -\left(A_v^{3} R\left(R_g + R\right)\right) / \left(\left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2}\left(R_g + R\right)\left(\left(A_v + 2\right) R_g + R\right) s ^{2} + \left(A_v + 1\right) C \left(\left(2 A_v^{2} R_{f2} + (A_v + 2) \left(R_{f2} + R_{f1}\right)\right) R_g^{2} + R\left(\left(A_v^{2} R_{f2} + (A_v + 3) \left(R_{f2} + R_{f1}\right)\right) R_g + R\left(R_{f2} + R_{f1}\right)\right) s + \left(A_v \left(A_v \left(A_v + 2\right) + 1\right) + 2\right) R_g^{2} + R \left(\left(A_v^{2} \left(A_v + 1\right) + 1\right) + 3\right) R_g + R\right)\right) \\ = 2 \text{ biproper } V(\text{Outh})/\text{Vin} = -\left(A_v \left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2} \left(R_g + R\right) s ^{2} + A_v \left(A_v + 1\right) C R\left(R_{f2} + R_{f1}\right) \left(R_g + R\right) s + A_v R\left(R_g + R\right) / \left(\left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2} \left(R_g + R\right) s ^{2} + A_v \left(A_v + 1\right) C R\left(R_{f2} + R_{f1}\right) \left(R_g + R\right) s + A_v R\left(R_g + R\right) / \left(\left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2} \left(R_g + R\right) s ^{2} + A_v \left(A_v + 1\right) C R\left(R_{f2} + R_{f1}\right) \left(R_g + R\right) s + A_v R\left(R_g + R\right) / \left(\left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2} \left(R_g + R\right) s ^{2} + A_v \left(A_v + 1\right) C R\left(R_{f2} + R_{f1}\right) \left(R_g + R\right) s + A_v R\left(R_g + R\right) / \left(\left(A_v + 1\right)^{2} C^{2} R_{f1} R_{f2} \left(R_g + R\right) s ^{2} + A_v \left(A_v + 1\right) C \left(\left(2 A_v^{2} R_{f2} + \left(A_v + 2\right) \left(R_{f2} + R_{f1}\right)\right) R_g^{2} + R\left(\left(A_v^{2} R_{f2} + \left(A_v + 3\right) \left(R_{f2} + R_{f1}\right)\right) R_g + R\left(R_{f2} + R_{f1}\right)\right) s + \left(A_v \left(A_v \left(A_v + 2\right) + 1\right) + 2\right) R_g^{2} + R\left(\left(A_v \left(A_v + 1\right) + 1\right) + 3\right) R_g + R\right)\right)$	^
Mæinn is ready for input. Prét pour une entrée utilisateur 👔	$ \begin{array}{l} 3 \text{ proper V}(0utb)/\text{Vin} = (\textbf{A}_v^{\ 2} (\textbf{A}_v + 1) C R R_{f2} (R_g + R) s + \textbf{A}_v^{\ 2} R (R_g + R)) / ((\textbf{A}_v + 1)^2 C^2 R_{f1} R_{f2} (R_g + R) ((\textbf{A}_v + 2) R_g + R) s ^2 + (\textbf{A}_v + 1) C \\ \left(\left(2 \textbf{A}_v^{\ 2} R_{f2} + (\textbf{A}_v + 2) (R_{f2} + R_{f1}) \right) R_g^{\ 2} + R ((\textbf{A}_v^{\ 2} R_{f2} + (\textbf{A}_v + 3) (R_{f2} + R_{f1})) R_g + R (R_{f2} + R_{f1})) \right) s + (\textbf{A}_v (\textbf{A}_v (\textbf{A}_v + 2) + 1) + 2) R_g^{\ 2} + R \\ ((\textbf{A}_v (\textbf{A}_v + 1) + 1) + 3) R_g + R)) \\ = = Please note that transfer function CANONICAL FORMS can be obtained easily by \\ = = making such to have no coefficient in front of denominator highest s power \\ >> Normal termination Maxima 3.28 s / wall 3.43 s [86.07, 92.44] \$ \\ \end{array} $	*
	Maxima is ready for input. Prét pour une entrée utilisateur	-

The 3 transfer functions are produced. There is no need a postprocess to assign the values to the components. It is important to note that the complexity of the denominator is related to the complexity of the circuit.

```
The Maxima variables are respectively XFER[1], XFER[2], and XFER[3].
```

Again, we can use Maxima, to process more. Here we compute the gain at infinity of the high pass output (transfer function number 2 of the Maxima output):

It is possible to specify the postprocessing in the schematics.

3. AN EXAMPLE OF SCHEMATIC, USING PROPERTIES AND POSTPROCESSING

In the previous schematics, we insert post processing in the schematics. Clicking in an empty space of the schematics, we access the '**SARC setup page**'. In the '**User code Maxima**' field, we can insert Maxima code.

In addition to the standard Maxima functions, a few functions are currently available. *(located in "/Simulate/MaximaDos/Functions" directory)*

Useful MAXIMA User's Funct	ions (used to pro	cess the transfer functions produced by the schematic editor)
PRINT_LINE(msg) ALL_PRINT() PRINT(id,xfer)	<pre>PRINT_LINE("line of text") ALL_PRINT() PRINT(IMPEDANCE,XFER[1])</pre>	print the line all transfer functions are printed return and print the transfer function "id = xfer"
Applied to all transfer fu	nctions (modify the a	array of transfer functions XFER[]) :
ALL_NUMERIC()	ALL_NUMERIC()	insert numerical values in all transfer functions
ALL_SUBSTITUTE(parm,val)	ALL_SUBSTITUTE(gm01,10e-3)	substitute in all transfer functions
ALL_LIMIT(parm,lim)	ALL_LIMIT(gm01,inf)	apply limit in all transfer functions
Applied on a single transf	er function (does not mo	dify the array of transfer functions XFER[]):
NUMERIC(xfer)	NUMERIC(XFER[2])	return a transfer function after inserting numerical values
SUBSTITUTE(xfer,parm,val)	SUBSTITUTE(XFER[1],gds1,gn)	return a transfer function after substitution
LIMIT(xfer,parm,lim)	LIMIT(XFER[1],gm01,inf)	return a transfer function after applying the limit
NUMERATOR(xfr)	NUMERATOR(XFER[1])	return the numerator of a transfer function
DENOMINATOR(xfr)	DENOMINATOR(XFER[3])	return the denominator of a transfer function
NCOEFF(xfer,n)	NCOEFF(XFER[2],2)	return the nth coefficient of the numerator of a transfer function
DCOEFF(xfer,n)	DCOEFF(XFER[1],3)	return the nth coefficient of the denominator of a transfer function
DC(xfer)	DC(XFER[1])	return the DC transfer function
INF(xfer)	INF(XFER[1])	return the transfer function at infinite frequency
Useful to signal the end o	f the processing which could	be in some cases (very) long

DONE()

print a line "end of the processing"

Here is the postprocessing code we have chosen; the syntax is the syntax of Maxima.

SARC setup		X
INTERN		j
OUTPUTS	V(Outl) , V(Outh) , V(Outb)	ļ
next STEP	^	
FEEDBACKS		
C code		
	·	
FEEDBACKS PARMS		
	execution order 0 GENERATE MIMO	
XWISH	PRINTPOLES RUBMODE	
User code	ALL_PRINT(); PRINT LINE("When A v is infinite.")	
Maxima	ALL LIMIT (A v, inf);	
	DONE();	
	< >	
special control		-
	Cancel OK	

And the results are:

3) wxMaxima 17.10.0 [run_vxMaxima.mac*] —	٥	×
Fichier Edition View Cell Maxima Équations Algèbre Analyse Simplifier Tracé de courbes Numérique Aide		
$\begin{bmatrix} \left(\left(2 + 1 + \frac{1}{2} $		^
$ \begin{array}{l} x_{FER[} 3 \ j = (A_{v}^{2} (A_{v}+1) C_{7} R_{3} R_{4} (R_{5}+R_{1}) R_{9} s + A_{v}^{2} R_{3} R_{4} (R_{5}+R_{1})) / ((A_{v}+1)^{2} C_{7} C_{8} (R_{3} R_{4}+R_{2} ((A_{v}+1) R_{4}+R_{3})) (R_{5}+R_{1}) R_{6} R_{9} s ^{2} + (A_{v}^{2}+1) R_{1} (R_{2} ((A_{v}+1) R_{4}+R_{3}) + R_{3} R_{4}) R_{5} + R_{1} (R_{2} ((A_{v}+1) R_{4}+R_{3}) + (A_{v}^{2}+1) R_{3}) + (A_{v}^{2}+1) R_{3} R_{4}) R_{9} + C_{8} (R_{1} R_{1} R_{1$		
$ \begin{pmatrix} \begin{pmatrix} R_{2} & (A_{v}+1) & R_{4}+R_{3} \end{pmatrix} + R_{3} & R_{4} \end{pmatrix} R_{5} + R_{1} & (R_{2} & (A_{v}+1) & R_{4}+R_{3} \end{pmatrix} + R_{3} & R_{4} \end{pmatrix} R_{6} \end{pmatrix} + s + \begin{pmatrix} R_{2} & (A_{v}+1) & R_{4}+(A_{v}^{3}+1) & R_{3} \end{pmatrix} + R_{3} & R_{4} \end{pmatrix} R_{5} + R_{1} & (R_{2} & (A_{v}+1) + 1) & R_{4} + (A_{v}^{2} & (A_{v}+1) + 1) & R_{3} \end{pmatrix} + (A_{v}^{2} + 1) & R_{3} \end{pmatrix} + (A_{v}^{$		
When A_v is infinite: $R_3 R_4 (R_5 + R_1)$		
$\frac{AEBR_{1}}{C_{7}} C_{8} R_{2} R_{4} (R_{5} + R_{1}) R_{6} R_{9} s ^{2} + C_{7} R_{1} (R_{3} R_{4} + R_{2} (R_{4} + R_{3})) R_{9} s + R_{2} R_{3} (R_{5} + R_{1}) R_{6} R_{9} s ^{2}$		I
$\frac{AFLR_{1}}{C_{7}C_{8}R_{2}R_{4}} \left(R_{5}+R_{1}\right)R_{6}R_{9} s ^{2}+C_{7}R_{1}\left(R_{3}R_{4}+R_{2}\left(R_{4}+R_{3}\right)\right)R_{9} s +R_{2}R_{3}\left(R_{5}+R_{1}\right)}{C_{7}R_{3}R_{4}\left(R_{5}+R_{1}\right)R_{9} s }$		l
$XFER[3] = \frac{1}{C_7 C_8 R_2 R_4 (R_5 + R_1) R_6 R_9 s ^2 + C_7 R_1 (R_3 R_4 + R_2 (R_4 + R_3)) R_9 s + R_2 R_3 (R_5 + R_1)}$ $>>> \text{ end of postprocessing}$		~
		>

Again, we can 'play' with the solutions and use the plain symbolic capability of Maxima.

4. FROM SYMBOLIC RESULTS TO NUMBERS AND BODE PLOTS

After the symbolic analysis of transfer functions, it could be interesting to apply numerical values to evaluate the solutions.

In this example, we apply symbolic values for parameters and add numerical values to the 'globals' parameters and ask for bode plots.

To modify the 'globals' parameters, a double click on its instantiation and edit.

We edit the **'SARC page setup**' and add a few Maxima code to apply the numerical values and produce the Bode plot of the first transfer function.

SARC setup		×
INTERN		
OUTPUTS	V(Outl) , V(Outb) , V(Outh)	_
		~
next STEP		
FEEDBACKS		
C code		
		~
FEEDBACKS PARMS		
	execution of a second provide a second p	
	execution order 0 GENERATE_MIMO	
XWISH	PRINTPOLES RUBMODE	
User code	<pre>PRINT LINE("When Av is infinite:") ;</pre>	^
Maxima	ALL_RINT();	
	PRINT LINE("Applying numerical values:") ;	
	ALL_PRINT();	
	BODE_GAIN(XFER[1], 1, 1e9) ;	~
	,	
special control		-
directives	, 	
	Cancel OK	

Here are the results of Maxima, the 3 transfer functions are now numerical.

🚳 voMaxima 17.10.0 [run_voMaxima.mac.vvomx]	-	٥	×
Fichier Edition View Cell Maxima Équations Algèbre Analyse Simplifier Tracé de courbes Numérique Aide			
$\begin{aligned} XFER[1] &= -\frac{R(Rq+R)}{C^2 Rf^2 Rg(Rq+R) s ^2 + CRf(2Rg+R) Rq s + Rg(Rq+R)} \\ XFER[2] &= \frac{CRRf(Rq+R) s }{C^2 Rf^2 Rg(Rq+R) s ^2 + CRf(2Rg+R) Rq s + Rg(Rq+R)} \\ XFER[3] &= -\frac{C^2 RRf^2 (Rq+R) s ^2 + CRf(2Rg+R) s ^2}{C^2 Rf^2 Rg(Rq+R) s ^2 + CRf(2Rg+R) Rq s + Rg(Rq+R)} \end{aligned}$			^
Applying numerical values:			
$XFER[1] = -\frac{1.110^8}{2.816 s ^2 + 4800.0 s + 1.110^8}$ $XFER[2] = \frac{17600.0 s }{2.816 s ^2 + 4800.0 s + 1.110^8}$ $2.816 s ^2$			
$XFER[3] = -\frac{1}{2.816 s ^2 + 4800.0 s + 1.110^8}$			
Plot Bode Diagram (gain)			
< Analyse du résultat Analyse du résultat			>

A Bode plot is then produced by Maxima:

Another example produces the transfer function of noise sources, resistors and amplifier.

The setup for transfer functions and Bode plots when the gain of the amplifier is infinite.

SARC setup		×
INTERN		
OUTPUTS	V(Out)	
		~
next STEP		
FEEDBACKS		
C code		
]	~
FEEDBACKS PARMS		_
	execution order 1 GENERATE_XFER(nointern)	
	execution order 0 GENERATE_MIMO	
		_
XWISH	PRINTPOLES RUBMODE	-
Liser code	ALL LIMIT(A v, inf) ;	~
Maxima	ALL_NUMERIC ();	
Piexine	ALL PRINT(); BODE CAIN(YPER[1] 1 1e9);	
	BODE GAIN(XFER[2], 1, 1e9);	
	BODE_GAIN(XFER[3], 1, 1e9) ;	
	DONE () ;	~
special		-
directives	1	
	Cancel OK	

And the results:

(8) votMaxima 17.10.0 [run_vvtMaxima.mac.vxtmx]		- 0 X
Fichier Edition View Cell Maxima Équations Algèbre Analyse Simplifier Tracé de courbes Numérique Aide		
>>> loading file '\Simulate\MaximaDos\Functions\misc.mac'		
$XFER[1] = \frac{a_v}{v}$		
$(1.0\ 10^{-12}\ A_v + 1.0\ 10^{-12})\ s ^2 + (2.0\ 10^{-6}\ A_v + 3.0\ 10^{-6})\ s + A_v + 1$		
$10.0 \ 10^{-7} \ A_v \ s + A_v$		
$XFER[2] = \frac{1}{(1.010^{-12} \text{ A} + 1.010^{-12}) s ^2 + (2.010^{-6} \text{ A} + 3.010^{-6}) s + \text{A} + 1}$		
$XFER[3] = - \frac{1.010^{-4} A_{y}[S] + 3.010^{-4} A_{y}[S] + A_{y}}{2}$		
$(1.0\ 10^{-12}\ A_{v}+1.0\ 10^{-12})\ s ^{2}+(2.0\ 10^{-6}\ A_{v}+3.0\ 10^{-6})\ s +A_{v}+1$		
>>> loading file '\Simulate\MaximaDos\Functions\bode.mac'		
Plot Bode Diagram (gain)		
*** A parameter is still symbolic : [A _v]		
Plot Bode Diagram (gain)		
*** A parameter is still symbolic : $[A_{v}]$		
Plot Bode Diagram (gain)		
*** A parameter is still symbolic : $[A_v]$		
>>> end of postprocessing		
		>
Advantage in a second data from the	Definition of the second	

The Bode plot (noise $1 \rightarrow$ output) :

The Bode plot (noise $2 \rightarrow$ output) :

The Bode plot (noise $3 \rightarrow$ output) :

5. DO NOT BE TOO AMBITIOUS

Symbolic analysis plays with (smart) manipulations of equations of Kirchhoff.

Examples are in directory '/**Simulate/Napados/Hdr/Max**'. You will notice that this software handles impressive problems. But this is a real challenge to handle too complex schematics, there is a limit in the complexity.

It is time to compute your first transfer function.

Open the 'Sarc Schematic Editor' from the 'NAPA Vineyard' panel

Open (or create) a schematic...

And enjoy !

6. MIXED-SIGNAL SIMULATIONS IN TIME-DOMAIN

This SARC Schematic Editor is also the entry point to insert continuous time modules in the Napa mixed-signal simulator netlist. The same schematics can produce the C code compatible to this simulator. The simulations are running in the time-domain together with sampled domain sub-circuits like switched capacitor network and/or digital circuitry.

The technology behind the simulation is SARC (Semi-Analytical Recursive Convolution) allowing to simulate linear and piece-wise linear circuits. A piecewise linear circuit is a linear circuit with a few percussions which change on the fly the value of some elements while preserving strictly the flux of inductances and the charges of capacitances.

Napa is a mixed-signal simulator, a teaser is available in the 'NAPA Vineyard' panel :

First, we will describe a non-inverting switched-capacitor integrator using the SARC Schematic Editor. All switches are described as resistors with a symbolic value 'phii' or 'phi2'. During the simulations the value of these resistors will set to large or small. This change of value is a percussion which will be handled properly by the SARC algorithm.

Symbolic values of components and '**globals**' variables are set. The model includes parasitic capacitances ad offset. We will add slew rate later.

The schematic is in "/Simulate/Napados/Hdr/Max/SWC_Integrator/Integrator_NI.sch"

This schematic described a piece-wise linear circuit and there is no meaning to compute a transfer function as it has no utility at this point. We will prefer to output a C code for the SARC algorithm. We select a 'GENERATE_MIMO' instead of a 'GENERATE_XFER'.

And we start Maxima from the '**File**' menu on the top of the SARC Editor. Maxima outputs the matrices A, B, C, and D for the SARC editor.

1	🕼 vx/Maxima 17.10.0 [run_wx/Maxima.mac.wxmx] — 🗗 🗙						
Fi	chier Edition View	Cell Maxima Équatio	ons Algèbre Analyse Simplifier Tracé	de courbes Numérique Aide			
F	A =					î	
		+ \$\Phi_1\$ = \$\$\$	$\frac{\varPhi_2 \neq \varPhi_1}{C_1 \varPhi_1 \varPhi_2}$	$-\frac{1}{c_1 \Phi_2}$	$-\frac{1}{c_1 \phi_2}$	0	
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	+Φ ₁ Φ ₂ α	$-\frac{\frac{2~(\varPhi_2 \neq \varPhi_1)}{C_1~\varPhi_1~\varPhi_2~\alpha}}$	$\frac{1}{C_1 \ \Phi_2 \ \alpha}$	$\frac{1}{C_1 \Phi_2 \alpha}$	0	
	$-\frac{c_2}{c_2}$	∝+c _o	$\frac{c_2 \alpha + c_0}{c_2 \alpha + c_0}$	$\frac{c_2 \alpha - c_a \operatorname{Gm} \Phi_2 + c_o}{r_a \left(- \left(c_a + c_a \right) \right) + r_a - r_a \left(c_a + c_a \right) \right)}$	$-\frac{C_2 \Phi_1 \alpha - C_a \left((Gm + Gds) \Phi_1 + 1\right) \Phi_2 + C_o \Phi_1}{x + x + (G + C_a) + (G + C_a) + (G + C_a)}$	$\frac{c_a}{r(a(c, \pm c))}$	
	$\varphi_2(c_2(a,c_2)a)$	c_	$\int \Phi_2 \left(c_2 \left(c_a + c_2 \right) a + c_a c_o + c_2 \left(c_o + c_a \right) c_a \right) \right) = \int C_2 \left(c_a + c_a + c_a \right) \right) = \int C_2 \left(c_a + c_a + c_a \right) \left(c_a + c_a + c_a + c_a \right) \left(c_a + c_a + c_a + c_a + c_a \right) = \int C_2 \left(c_a + c_a + c_a + c_a + c_a + c_a \right) \left(c_a + c$	a)) $\Psi_2 \begin{pmatrix} C_2 \\ C_2 \end{pmatrix} \begin{pmatrix} a & c_2 \end{pmatrix} a + C_a \\ C_o + C_2 \end{pmatrix} \begin{pmatrix} a & c_0 + C_2 \\ c_0 & c_0 \end{pmatrix}$	$ \begin{aligned} & \Psi_1 \Psi_2 \left(C_2 \left(C_a + C_a \right)^{\alpha} + C_a C_o + C_2 \left(C_o + C_a \right) \right) \\ & \left(\left(C_2 \operatorname{Gm} + \left(C_a + C_2 \right) \operatorname{Gds} \right) \Psi_1 + C_2 \left(\operatorname{Gm} \Psi_1 + 1 \right) \right) \Psi_2 + C_2 \left(\Psi_2 + \Psi_1 \right) \end{aligned} $	$\varphi_1(c_2(a, c_2)\alpha + c_a)$ $c + c_2$	
	$-\frac{1}{\Phi_2\left(C_2\left(C_a+C_2\right)\alpha\right)}$	$\frac{2}{c_a c_o + c_2 (c_o + c_a)}$	$\Phi_2\left(C_2\left(C_a+C_2\right)\alpha+C_aC_o+C_2\left(C_o+C_a+C_aC_o+C_2C_o+C_aC_o+C_aC_a+C_aC_a+C_aC_a+C_aC_a+C_aC_a+C_aC_a+C_aC_a+C_a+$	$\frac{1}{\left(\frac{1}{a}\right)} = \frac{1}{\left(\frac{1}{a}\left(\frac{1}{c_{2}}\left(\frac{1}{c_{a}}+\frac{1}{c_{2}}\right)a+c_{a}c_{o}+c_{2}\left(\frac{1}{c_{o}}+\frac{1}{c_{a}}\right)\right)\right)}$	--(1+2)(1+2)(1+2)(1+2)(1+2)(1+2)(1+2)(1+2)	$\frac{a}{\Phi_1\left(c_2\left(c_a+c_2\right)\alpha+c_a\right)}$	
		0	0	0	$\frac{1}{c_3 \phi_1}$	$-\frac{\varPhi_2+\varPhi}{c_3\varPhi_1},$	
	0	0					
	$c_1 \Phi_1 \alpha$	0					
	$B = \begin{bmatrix} 0 & -\frac{1}{c_2} (c_2) \end{bmatrix}$	$c_a Gm Offs$ $(a + c_2) \alpha + c_a c_o + c_2$	$\left(C_{o} + C_{a} \right)$			- 1	
	0 <u>c₂(c</u>	$\begin{pmatrix} c_a + c_2 \end{pmatrix}$ Gm offs $a + c_2 \end{pmatrix} \alpha + c_a c_o + c_2 \end{pmatrix}$	$\overline{\left(c_{o}+c_{a}\right)}$				
	0 [0 0 0 0 1]	0					
<						> `	
Ma	srima is ready for input. Prét pour une entrée utilissteur 🔹						

Maxima produces also a text file, an ANSI-C header file ('.hdr') compatible with the Napa simulator. The list of inputs, outputs and parameters of this model will be used to create a Napa cell.

Open the Crimson Editor from ten 'Napa Vineyard' panel:

We use here files contained in the package. The explanations concerning the Napa simulator can be found in the corresponding teaser. We will explain briefly and focus to start quickly a Napa simulation.

The header produced by Maxima '/Simulate/Napados/Hdr/Max/SWC_Integrator/Integrator_NI.hdr'

This model has 1 input, 3 outputs and 11 parameters. This file is in the directory containing the corresponding schematic ('.sch'), netlist ('.mac') and pdf files.

We prepare now a cell containing the call of the code produced by Maxima ('.net'), a data file containing the numerical values of the components ('.dat') and finally the file containing the simulation '(.nap)'.

The cell file '/Simulate/Napados/Net/SWC_Integrator/Integrator_NI.net'

😰 Crimson Editor	- 6	J X
File Edit Search View Document Project Tools Macros Window Help		
● Integrator1_Ni.net ● Integrator1_Ni.net ● Integrator1_Ni.dat		
□ ☞ 點 🗃 🖬 ∰ 毎 🗅 🖇 軸 📾 그 그 💷 🗰 熱 🖓 🖓 🖻 勁 🗩 // ♥ 🚼 🔸 🗉 ト 🛛 ? 👌		
C CASimulata NanaDout Net SWC International International Nanet		
2 CT		
3 #** 1 Input Non Inverting Delayed Switched Capacitor Integrator		
4 #**⊈		
5#** USAGE: node void cell plsnam "Integrator1_NI.net" I A B O Clk1 Clk2 fildat1	8	
	^	
o declare (analog) plu o declare (analog) cl \$c2 \$c3 \$c4 \$c0		dela ^
10 declare (analog) salpha¶		
11 declare (analog) \$GM \$GDS \$IMAX ^{II}		
12 declare (digital) \$Clk1 \$Clk2¶		
13 declare (string) \$fildat¶		
15 mader <max integrator1_ni.hdr="" swc_integrator="">¶</max>		
17 data \$fildat \$C1 \$C2 \$C3 \$GM \$GDS \$IMAX \$OFFS \$CA \$CO \$alpha \$Ron \$Roff{] 18 {]		
19 dvar \$rsw1 switch_d(\$Clk1, \$Roff, \$Ron) &update¶		
20 dvar \$rsw2 switch_d(\$Clk2, \$Roff, \$Ron) &update4 21 ¶		
22 ganging \$parm[] \$C1 \$C2 \$C3 \$CA \$CO \$alpha \$GD5 \$rsw1 \$rsw2 \$GM \$OFF5 \$IMAX] 23 ¶		
24 node \$tag duser sarc Integrator1_NI() \$parm \$I¶		
25 node (\$A) duser sarc \$tag (V@A) 1		
26 node (\$B) duser sarc \$tag (\VertB) \		
27 node (\$0) duser sarc \$tag (V@UUt)1		
	~	~
	>)
Ready Ln 1, Ch 56 40 ASCII, DOS F		C COL OVE

A second file is used to assign values to the components and is instantiated inside the cell. This data cell file is '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.dat'

The last file is the netlist of the simulation.

The simulation file is '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.nap'

The file contains the instantiation of a non-overlapped clock generator, the cell describing the integrator, a 'pwl' cell describing the input, and the location of the data file containing the parameters. A change in clocks percutes the value of the switches resistances.

The instantiated pwl cell is '/Simulate/Napados/Net/Clock/clock12.net'

The simulation file:

To start the simulation, from the file in the editor, press **<left alt> <R>**. The simulation flow is then automatic.

- The '<u>Mac preprocessor</u>' processes the simulation file and creates '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.temp'.
- From this file, the 'Napa Compiler' produces an ANSI-C file representing the simulator to run.
 - The ANSI-C file is '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.c'.
- This file is compiled by the 'mingw gcc Compiler'.

The executable is '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.exe'.

Output on screen:

🔤 Adr	ministrateur: NAPA Compile and Run: Source File *** Integrator1_NL.nap ***	-	٥	×		
[Integ [Integ [Integ [Integ [Integ	rator1_NI] **** MAC Preprocessor Running **** rator1_NI] **** NAPA Compiler Running **** rator1_NI] **** SGCC Compiler Running **** rator1_NI] **** SARC Engine Linking ***** rator1_NI] **** SARC Engine Linking *****					
····	Simulation of a Switched Capacitor Integrator (with slew-rate)					
····· ····· ·····	2.000 pF <- intl_C1 2.000 pF <- intl_C2 2.000 pF <- intl_C3 123.2 uDnm-1 <- GN1 40.00 uA <- INAX1 35.20 nDnm-1 <- GDS1 3.500 k <- GN1/CDS1 0.000 V <- OFFS1					
••••	Random Seed [I] : 765448142 **** Output Tag [0] : 144724853 ****					
••••	NAPA Compiler : V3.05e for Win64 ****					
****	Main Netlist : Integratori_MI.tmp ****					
****	Simulator Time : 8,00000 us **** Simulator Index : 88001 ****					
••••	Run Time I/0 : ****					
	<- Pill.in [I] **** -> stdout [0] ****					
****	Stopwatch : H00:M00:S04.132 ****					
••••	Normal Termination ****					
[Integ	Integrator1_NI]					

This **executable** produces here the simulation outputs in less than 4.2 seconds.

Now, from the file in the editor, press **<left alt> <G>** to call '**gnuplot**'.

It is possible to configure the plot (icon pointed by the left arrow) or use a preexisting configuration (right arrow). The configuration was made available for this exercise.

This file is '/Simulate/Napados/Net/SWC_Integrator/Test/Integrator_NI.plt'

🚵 Choose Plot			×
$\leftarrow \rightarrow \checkmark \uparrow$ 🔤 « Ne	et > SWC_Integrator > Test	✓ O Rechercher dans : Test	Ą
Organiser 🔻 Nouveau	dossier		. ?
Dropbox	Nom	Modifié le Type	
Cons Drive	🖉 _Integrator1_NI.plt	25/06/2018 14:54 Fichier F	PLT
CheDrive	Integrator2_NI.plt	15/05/2018 19:18 Fichier F	PLT
💻 Ce PC	🔯 _Integrator3_NI.plt	15/05/2018 19:17 Fichier P	PLT
E. Bureau	🔯 _Nagaraj_Integrator1_NI.plt	16/05/2018 13:45 Fichier P	PLT
Documents	🔯 _Nagaraj_Integrator2_NI.plt	16/05/2018 13:45 Fichier P	PLT
📰 Images	🔯 _Nagaraj_Integrator3_NI.plt	16/05/2018 13:45 Fichier P	PLT
👌 Musique			
🧊 Objets 3D			
🕂 Téléchargement			
😽 Vidéos			
🟪 OS (C:)			
Y	<		>
Nom	du fichier : _Integrator1_NI.plt	✓ Default (* つけ)	~
		Aide Ouvrir 🗸 An	nuler

And '**gnuplot**' produces the graphic, 2 views of this output:

No slew-rate? We will add the appropriate model.

A current source is added in parallel to the transconductance.

A Maxima user's function 'APPLY_LIMIT()' is used to implement the slew-rate model. The value of the constant current source must be declared as '**INTERN**', the current 'I(gm)' flowing in the transconductance and its voltage command 'cV(gm)' must be in '**OUTPUTS**'.

SARC setup		×
INTERN	Offs , I_max	
OUTPUTS	V(Out), V(A), V(B), cV(Gm), I(Gm)	-
	APPLY LIMIT (cV (Gm) , Gm , I max)	
next STEP		
FEEDBACKS		
C code		
FEEDBACKS		
PARMS	1	
	execution order 0 GENERATE_XFER(nointern)	
	execution order 1 GENERATE_MIMO	
NUMBER OF		-
XWIDH		
User code	· · · · · · · · · · · · · · · · · · ·	-
Maxima		
		1
control		-
directives		<u> </u>
	Cancel OK	

The numerical value of 'I_max' is in the data file and transmitted to the SARC function.

Using the same procedure, the slew-rate limitation appears now in the graphic.

The Napa Simulator has many features to analyze the results. Please consult the related teaser.