
NAPA User's Guide
Version 4.50, July 6, 2025

Yves Leduc
Greg C. Warwar
Richard K. Hester

Table Content
INTRODUCTION...8

THE NAPA COMPILER..8
NAPA IDENTIFIERS...9
NAPA ITERATIVE IDENTIFIERS...9
NAPA INSTRUCTIONS...9
COMMENTS...10
NODES OR VARIABLES ?...10

THE CONCEPT OF NAPA...11

THE NAPA NODE..11
THE NAPA NETLIST..12
THE SAMPLING FREQUENCY..12
THE NETLIST PROCESSING...14
HANDLING THE DELAYS..16
NODE DETERMINATION AND SORTING..16
THE NETLIST TO C TRANSLATION...17
THE SIMULATION CONTROL..18
NAPA IN A COMPUTER NETWORK...18
NAPA COMPILER COMMAND LINE..18
NAPA PORTABILITY..20
C LIMITATIONS: IMPORTANT WARNINGS!..20
C CASTING: IMPORTANT WARNINGS!..20
NAPA PROCESS FLOW..22
THE NAPA FILE SYSTEM..23

1. Absolute Reference..23
2. Generic Library Reference..23
3. Root Directory Reference..23
4. Main Directory Reference...23
5. Current Cell Directory Reference...23

DIRECTORY DEFINITIONS AND PROCESSING...23
BEST PRACTICES..23

NAPA INSTRUCTIONS...24

NAPA NODES..27

USAGE..27
CHAMELEONIC NODES...27
NODESETS..28
PSEUDO-NODES..28
UNNAMED AND UNUSED SIGNALS..29
AUTOMATIC NODES...29
BIT FIELD EXTRACTOR..30
NODE KIND LIST..30

NAPA USER'S VARIABLES..33

USAGE..33
VARIABLE TYPE..33

REGISTER ARITHMETIC...35

WIDTH LIMITED NODES AND VARIABLES...35

LIST OF NAPA INSTRUCTIONS...38

ALIAS..38
ARRAY...38
ASSERT..40
CALL...41
COMMAND_LINE...42
COMMENT...43
DATA...43
DEBUG..45
DECIMATE...45
DECLARE...46
DIRECTIVE..48
DROP...49
DUMP..50
DVAR, IVAR...51
ERROR...52
EVENT...52
EXPORT...52
FORMAT..54
FS..55
GANGING..55
GATEWAY..57
HEADER..57
INIT...58
INJECT...60
INPUT..60
CELL_INTERFACE, DATA_INTERFACE...61
INTERLUDE...61
INTERPOLATE..62
IVAR..63
LOAD...63
NAPA_VERSION..63
NODE...64
NOMINAL..65
NUM_INITIAL..65
OPCODE...65
OUTPUT...66
PING..68
POST..69
RANDOM_SEED...70
RESTART..71
STRING..71
STUCK...72
SYNCHRONIZE...72
TERMINATE...73
TITLE...73
TOOL...74
TS..74
UPDATE...75
VOID..77
WARNING..77
(COMMENT)..77

INSTRUCTION QUALIFIERS...78

AFTER, BEFORE...78
WHEN..79
WITH...79

(EXPAND) | (NOEXPAND)...80
(NEGATIVE) | (POSITIVE) | (DUAL)..80
(NO) | (YES)...81
(NOCHECK)...81
(HEX)..81
(DIGITAL)..81
(ANALOG)...81
(STRING)...81
(CONSTANT)..81
(TRUE)...82
(ARITHMETIC) | (GEOMETRIC) | (HARMONIC) | (RMS)..82
(POINTER)...82
(NEW)..82
(<OPTION>[::<PARM>])..82
(<REAL_TYPE_OUTPUT_SCALING>)...83
(<INTEGER_TYPE_OUTPUT_CONFIGURATION>)...84

SHORT FORMS..85

&UPDATE..85
&CONSTANT...85
&EXPORT..86
&DELAYED...86

SPECIAL SYMBOLS...87

$ …...87
./ …...87
~/ …...87
< … >...87
(…)...88
…...88
… // …...88
..88
..88
…..88
:...88
::..88

NODE KINDS..89

ADC: N LEVELS SIGNED A/D CONVERTER...89
ALGEBRA: CHAMELEONIC C EXPRESSION...90
ALU: USER-DEFINED ALU...91
AND: N INPUTS AND ELEMENT...92
AVERAGE: AVERAGE OF N INPUTS...92
BSHIFT: BARREL SHIFTER...92
BTOI: N BITS CONVERSION TO UNSIGNED INTEGER...93
BUFFER: NON INVERTING BUFFER..93
BWAND: N INPUTS BIT WISE AND...93
BWBUFFER: BIT WISE NON INVERTING BUFFER...93
BWINV: BIT WISE INVERTER...93
BWNAND: N INPUTS BIT WISE NAND..94
BWNOR: N INPUTS BIT WISE NOR...94
BWNOT: BIT WISE BIT WISE NOT...94
BWOR: N INPUTS BIT WISE OR...94
BWXNOR: N INPUTS BIT WISE XNOR..95
BWXOR: N INPUTS BIT WISE XOR...95

CELL: SUB CIRCUIT INSTANTIATION FROM A FILE..95
CHANGE: WATCHDOG...96
CLIP: CLIP ELEMENT...97
CLOCK: DIGITAL CLOCK GENERATOR...97
COMP: COMPARATOR..97
CONST: CONSTANT...98
COPY: SIGNED COPY...98
COSINE: COSINE WAVE VOLTAGE GENERATOR...99
DAC: N LEVELS SIGNED D/A CONVERTER...99
DALGEBRA: C EXPRESSION CAST TO REAL TYPE...100
DC: DC VOLTAGE SOURCE..100
DELAY: SINGLE OR MULTIPLE DELAY...101
DIFFERENTIATOR: NON INVERTING DIFFERENTIATOR..102
DIV: DIVIDER ELEMENT..102
DTOI: CONVERTS AN ANALOG TYPE NODE TO DIGITAL TYPE...102
DTOOL: USER-DEFINED TOOL...103
DUSER: USER-DEFINED FUNCTION...103
EQUAL: EQUALITY...104
FZAND: N INPUTS AND ELEMENT (FUZZY LOGIC)..105
FZBUFFER: NON INVERTING BUFFER (FUZZY LOGIC)...105
FZINV: NEGATION ELEMENT (FUZZY LOGIC)...105
FZNAND: N INPUTS NAND ELEMENT (FUZZY LOGIC)..105
FZNOR: N INPUTS NOR ELEMENT (FUZZY LOGIC)..106
FZNOT: NEGATION ELEMENT (FUZZY LOGIC)..106
FZOR: N INPUTS OR ELEMENT (FUZZY LOGIC)...106
FZXNOR: 2 INPUTS XNOR ELEMENT (FUZZY LOGIC)..106
FZXOR: 2 INPUTS XOR ELEMENT (FUZZY LOGIC)...106
GAIN: GAIN ELEMENT..106
GENERATOR: SUB CIRCUIT GENERATION FROM A FILE..107
HOLD: HOLD AND TRACK ELEMENT...108
IALGEBRA: C EXPRESSION CAST TO INTEGER TYPE...108
INTEGRATOR: NON INVERTING INTEGRATOR...108
INV: NEGATION ELEMENT (BOOLEAN LOGIC)..109
ITOB: BIT EXTRACTOR FROM DIGITAL NODE...109
ITOD: CONVERTS A DIGITAL TYPE NODE TO ANALOG TYPE...109
ITOOL: USER-DEFINED TOOL..110
IUSER: USER-DEFINED FUNCTION..110
LATCH: SR LATCH..111
LSHIFT: LEFT SHIFT ELEMENT..112
MAX: MAXIMUM OF N INPUTS...112
MERGE: N INPUTS MULTIPLEXER FROM EXCLUSIVE LOOP SEGMENTS..112
MIN: MINIMUM OF N INPUTS...113
MOD: MODULO DIVIDER ELEMENT..113
MULLER: C MULLER ELEMENT, N INPUTS (BOOLEAN LOGIC)..113
MUX: N INPUTS MULTIPLEXER CONTROLLED BY INTEGER LEVELS...114
NAND: N INPUTS NAND ELEMENT (BOOLEAN LOGIC)...114
NOISE: SOURCE OF NOISE...114
NOR: N INPUTS NOR ELEMENT (BOOLEAN LOGIC)...115
NOT: NEGATION ELEMENT (BOOLEAN LOGIC)...115
OFFSET: DC LEVEL SHIFTER ELEMENT...115
OR: N INPUTS OR ELEMENT (BOOLEAN LOGIC)..115
OSC: OSCILLATOR...116
POLY: POLYNOM OF ORDER N..116
PROD: N INPUTS MULTIPLIER ELEMENT...116
QUANT: QUANTIFIER..116
RAM : RANDOM ACCESS MEMORY...117

RAM2 DUAL PORT RANDOM ACCESS MEMORY..117
RECT: RECTIFIER ELEMENT..118
REGISTER: DATA REGISTER...118
RELAY: ONE INPUT RELAY, NORMALLY CLOSED..118
RIP: BIT WISE RIP BUS...119
ROM : READ ONLY MEMORY...119
ROM2 : DUAL PORT READ ONLY MEMORY...120
RSHIFT: RIGHT SHIFT ELEMENT WITHOUT ROUNDING...120
RSHIFT1: RIGHT SHIFT ELEMENT WITH ROUNDING..121
RSHIFT2: RIGHT SHIFT ELEMENT WITH SPECIAL ROUNDING...121
SIGN: SIGN OF SIGNAL..121
SINE: SINE WAVE VOLTAGE GENERATOR..121
SQUARE: SQUARE VOLTAGE SOURCE...122
STEP: STEP FUNCTION SOURCE..122
SUB: SUBTRACTION ELEMENT..122
SUM: N INPUTS SUMMING ELEMENT..123
TOGGLE: TOGGLE FLIP FLOP..123
TEST: C EXPRESSION CAST TO INTEGER TYPE..123
TRACK: TRACK AND HOLD ELEMENT...124
TRIANGLE: TRIANGULAR VOLTAGE SOURCE..124
TRIG: TRIGGER (DUAL, POSITIVE OR NEGATIVE EDGE TRIGGER)..125
UADC: N LEVELS UNSIGNED A/D CONVERTER..125
UDAC: N LEVELS UNSIGNED D/A CONVERTER..126
WSUM: WEIGHTED SUM OF N INPUTS..126
XNOR: N INPUTS XNOR ELEMENT (BOOLEAN LOGIC)...126
XOR: N INPUTS XOR ELEMENT (BOOLEAN LOGIC)..127
ZERO: INSERTION OF ZEROES...127

NAPA CONSTANTS AND TYPES..128

NAPA CONSTANTS..128
CONSTANT TYPES...131
GENERIC TYPES AND OUTPUT FORMATS...132

GLOBAL VARIABLES..133

NAPA C FUNCTIONS AND MACRO FUNCTIONS...135

AVAILABLE C MACRO FUNCTIONS...135
AVAILABLE C FUNCTIONS..137
USER’S C FUNCTIONS...139

USER-DEFINED FUNCTIONS AND TOOLS..140

THE CONCEPT..140
TOOL SYNCHRONIZATION..142
AN EXAMPLE OF TOOL..142
RESOURCES MANAGERS..146

APPENDIX A...149

NAPA SIMULATION FLOW. ORDER OF EXECUTION...149
Initialization..149
Main Loop...149
Termination..149

APPENDIX B...151

NAPA RESERVED IDENTIFIERS...151

APPENDIX C...161

NAPA FILE NAMING RECOMMENDATION..161

APPENDIX D...162

NAPA NETLIST EXAMPLE..162

APPENDIX E...167

QUICK REFERENCE: NAPA INSTRUCTIONS..167

APPENDIX F...170

QUICK REFERENCE: NODE SYNTAX..170

APPENDIX G...175

QUICK REFERENCE: THE NAPA FILE SYSTEM..175

Introduction

NAPA offers a comprehensive work frame to IC
designers for the high level simulation of complex
mixed signals network.

The NAPA Compiler

NAPA is a netlist to C compiler. NAPA generates an optimized Cycle Based Simulator, which is compiled
and executed. The goal is to offer a framework to describe quickly and safely a mixed-mode sampled data
network with minimal constraints. The strategy used by NAPA is to help the designer produce the fastest
possible C program to simulate a netlist without worrying about the complexities of actual C programming.

Just as an electrical circuit can be modeled as a set of differential equations, a discrete time network, like an
analog modulator or a digital filter, can be modeled as a set of difference equations. The process of
converting a netlist into a set of difference equations is straightforward and the perfect type of job for a
computer.

NAPA reads in a netlist and writes out an optimized ANSI-C program. The output C program is combined
with pre-written C program header files containing user-defined functions.

The C simulator written by NAPA uses "long long integer" and "double precision" respectively as internal
representations of digital and analog nodes. Register arithmetic emulation allows simulation of the exact
implementation of digital circuits if needed. Node types are determined automatically by netlist analysis and
object determination. Type consistency is checked during simulator building.

NAPA is designed to be easily extended by users. Users can build high-level models and introduce them as
header files, cells, or cell generators. Signal analysis is performed using synchronized "smart tools" that can
accumulate the data necessary for analysis, open and close output files, while controlling the simulation
flow. Tools are written in C and are designed to be modified, extended, or rewritten by users if necessary.

NAPA takes advantage of ANSI-C's better consistency to catch errors. It also has an extensive set of
verifications capable of detecting errors and unwanted casting in the netlist description. NAPA can be used
advantageously with a data preprocessor like MAC. This preprocessor prepares the netlist, adding user-
friendliness, documentation, and flexibility to the description.

NAPA currently runs on UNIX platforms like HP and Sun, and on PC-x86 platforms DOS and Windows1,
with the only requirement being access to an ANSI-C compiler. The code is written to be as portable as
possible and adheres to the ANSI-C standard.

1 The environment used by the developper

8

NAPA Identifiers

NAPA, like C, is case sensitive. NAPA identifiers must begin with a letter followed by zero or more
alphanumeric characters (including the underscore character). Identifiers starting with the prefix "NAPA"
are reserved keywords. Characters "$" and "#" have special meaning and should be reserved for this
purpose only. A complete list of NAPA identifiers and reserved keywords is given in appendix B. Reserved
keywords cannot be used as NAPA node or variable identifiers.

Examples of valid identifiers:

s1
id
Sig12a
name_3B

NAPA Iterative Identifiers

An iterative identifier is an identifier ending with "N..M" where N and M are positive integers. It replaces a
sequence of identifiers with the same root followed by an integer between N and M. This helps keep the
NAPA netlist as compact and readable as possible.

Example of valid iterative identifiers:

abc3..7
file2..0

These iterative identifiers (if accepted by the context) are equivalent to:

abc3 abc4 abc5 abc6 abc7
file2 file1 file0

There is another way to iterate nodes. Please refer to 'nodesets'.

NAPA Instructions

A NAPA netlist is a sequence of one-line instructions. It is nevertheless possible to extend an instruction
across several lines using a continuation character (see below). An instruction is identified by a keyword
which must be the first token of the line. Depending on the instruction type, zero or more parameters follow
the instruction identifier. The parameters of an instruction are identified by their positions.

<instruction_keyword> [<parameter...>]

Instructions belong to five classes: declaration, action, control, input/output, and format, corresponding to
the usual features available in programming languages. NAPA instructions can be location dependent. A list
of instructions is given in a chapter below.

An instruction can be extended across several lines using the continuation character '...' at the end of all
lines to be extended:

9

<beginning_of_an_instruction> ...
<continuation_of_the_instruction>

A continuation character is not active inside a string (delimited by double quotes).
An example of an instruction spread across several lines is shown below (see also the paragraph about
comments below):

node out dalgebra 1.0 ...
 + 2.0*in ...
 + 3.0*in*in

This is identical to:

node out dalgebra 1.0 + 2.0*in + 3.0*in*in

Comments

NAPA supports 2 types of comments: whole line comment² and right-hand comment.
Please note that C comment (/* … */) is not supported.

this is a whole line of comment

#* this is a whole line of comment

<some relevant NAPA netlist line> // this is a right-hand comment

This is an example of a whole line of comment

node w8 dc (digital) 255 // comment here if you want

Of course, a right-end comment is not active inside a string (delimited by double quotes).
It is interesting to note that comments are compatible with continuation characters:

node out dalgebra 1.0 ... // offset term
 + 2.0*in ... // linear gain
 + 3.0*in*in // quadratic term

Nodes or Variables ?

To describe a system, you will mainly use the NAPA "node". The nodes represent the structure of the
modules, both the signals and their fabrication. Parameters are introduced with another kind of basic
instruction, "ivar" and "dvar". These parameters are the preferred way to describe the external world.
Parameters are defined by default as constants but may be updated explicitly using dedicated instructions.

An Example: The gain of an amplifier is a parameter, determined by the (external) specifications of the
module. It is preferable to use an "ivar" or a "dvar" to introduce this parameter. But if the gain of a gain-
controlled amplifier depends on the states of the system, it will be defined as a "node" as it is a signal part
of the structure of the system.

Note: On some occasions, you will have difficulty choosing. You will very often find that either the "node"
or the "ivar" / "dvar" will give a cleaner description.

10

The Concept of NAPA

The goal of this chapter is to give users an in-depth
view of the NAPA compiler. A good way to
understand the concept is to compare the NAPA input
netlist with the ANSI-C output code produced by the
compiler.

The NAPA Node

The network is built from UNIDIRECTIONAL primitives having one output and one or more inputs. Inputs
are SAMPLED at a defined sampling frequency. These primitives associating an output node with the
instantiation of an object (a primitive) are called NAPA nodes. Therefore, a NAPA node cannot be the
output of two primitives and for this reason cannot be defined twice in a netlist.

An important point about nodes is that they are represented internally as either a double precision value
(analog nodes) or a long long integer value (digital nodes). Some nodes are always analog or always digital
type while others can be either, depending on how they are used or connected together.

11

The NAPA Netlist

The NAPA netlist is the description of the circuit to be simulated. Considering, for example, the primitives
called “prim_A”, “prim_B” and “prim_C” inside the following circuit:

The network can be translated in the NAPA netlist as a set of NAPA nodes:

...
node s3 prim_C s1 s2
node s1 prim_A in
node s2 prim_B s4
node s4 prim_A s3
node out prim_C in s4
...

The netlist is evaluated at a regular rate chosen by the user. Data are sampled by default at 1.0 Hz. This
sampling frequency can be set-up by the user.

The Sampling Frequency

The NAPA compiler is designed to generate simulators for mixed signals sampled data networks. A main
sampling frequency determines the pace of the simulation. Local sampling frequency can be decreased
('downsampling' or 'decimation') or increased ('upsampling' or 'interpolation'), depending on specific NAPA
instructions. This feature is especially interesting in the description of digital filters. Considering the
previous example, we can imagine that part of the network is running at half the main sampling frequency:

12

NAPA instruction "fs" defines the main sampling frequency. The decimation boundary separates the
network into two separate segments. This separation is translated in the netlist by the instruction "decimate".
This instruction decreases the sampling frequency of the second segment by the decimation factor (here a
decimation factor of 2):

...
fs 1.0e6 // main sampling frequency

node s3 prim_C s1 s2 // part running at 1 MHz
node s1 prim_A in
node s2 prim_B s4
node s4 prim_A s3

decimate 2

node out prim_C in s4 // part running at 0.5 MHz
...

Interpolation follows the same principle. The interpolated rate is higher that the nominal sampling
frequency, in the following example by a factor 16 (instruction “interpolate“):

...
fs 1.0e6 // main sampling frequency

node s3 prim_C s1 s2 // part running at 1 MHz
node s1 prim_A in
node s2 prim_B s4
node s4 prim_A s3

interpolate 16

node out prim_C in s4 // part running at 16 MHz
...

The description has to be completed by simulation controls and by other parameters controlling the way
data are analyzed and output.

13

The Netlist Processing

The NAPA compiler has the task of organizing and verifying the data flow of the sampled network,
introducing delays where the user requests, without introducing any other delay. While processing the
netlist, NAPA determines and verifies the node type (analog or digital) by inspection and sorting. NAPA
also verifies that internal loops contain at least one delay (see the node determination).

We will consider the following example:

The NAPA netlist corresponding to this network is:

...
fs 1.0e6 // main sampling frequency

node s3 and s1 s2 // and gate
node s1 inv in // inverting gate
node s2 delay s4 // delay element
node s4 inv s3 // inverting gate
node in (to be completed) // input signal

decimate 2 // decimation by 2

node out and in s4 // and gate
...

NAPA organizes the simulation around a main loop describing the data flow occurring inside one sampling
cycle "1 / fs". The netlist is divided by decimation and interpolation instructions into segments, with the
main segment being segment 0. Decimated and interpolated segments are introduced inside the main loop
as "if" C instructions.

The compiler sorts the nodes of the entire netlist. In the example, segment 0 will contain the set of nodes
running at the nominal sampling frequency "fs", and segment 1 will contain the nodes running at the
decimated speed, here "fs / 2". Segment 0 contains nodes "s3", "s1", "s2", "s4" and "in". Segment 1 contains
the node "out".

Some nodes (output of signal generators) are clearly not dependent on any other nodes. They are therefore
unconditionally determined and are the entry points of the simulation. Delays represent a special class of
nodes, as they are not dependent on a value at the current time but one simulation loop before.

14

The node tree corresponding to the netlist of the example is:

15

This tree corresponds to the following table:

SEGMENT ACTION CLASS DEPENDENCY DETERMINED?

[0] immediate action s1, s2 ?

immediate action in ?

delayed action s4 ?

immediate action s3 ?

immediate action (none) yes

[1] immediate action in, s4 ?

Handling the Delays

Delayed action nodes are processed first. New entry points are inserted for each delayed node at the
beginning of corresponding segments. The entry points do not belong to the segment but are the entry points
of the whole set of nodes of this segment. They represent the bridges between two consecutive simulation
loops. A delay brings the value taken by a node from one loop into the next one.

After insertion of new entry points corresponding to delays (here for node "s4"), the tree becomes:

Node Determination and Sorting

Nodes are sorted and their determination is checked by automatic netlist inspection. Entry points
corresponding to delays are sorted first. All entry points are considered as unconditionally determined.

Other nodes are determined as soon as their inputs are determined. In the example, node "s1" is determined,
as its input node "in" is determined.

At this point of the process, residual internal loops of nodes cannot be determined in any way. Therefore
they are flagged as errors by the NAPA compiler. They correspond in the original NAPA netlist to loops
without delay. This is a typical cause of node undetermination.

Node types (analog or digital) are obtained from node kinds and/or primitive input nodes. In the example,
node "in" is supposed to be digital type by construction; node "s2" is integer type as it is the delayed image
of node "s4" which is digital type by construction (output of an inverting gate).

16

.

SEGMENT NODE ACTION CLASS DETERMINED? TYPE

[0] s2 delayed action yes Digital type

in immediate action yes Digital type

s1 immediate action yes Digital type

s3 immediate action yes Digital type

s4 immediate action yes Digital type

[1] out immediate action yes Digital type

Type consistency is checked during node determination.

The Netlist to C Translation

From the processed list of nodes, the NAPA compiler translates the netlist into C code. The resultant code is
a flattened description of the netlist without function calls.

...
double NAPA_simulator_index;
long long inode_s2;
long long inode_in;
long long inode_s1;
long long inode_s3;
long long inode_s4;
long long inode_out;
...

int main(void) {
 ...
 NAPA_reset_nodes(); /* initialization */
 NAPA_abs_loop_index = 0LL; /* loop counter */
 do { /* main loop */
 NAPA_time = ...;
 /* always */ {
 NAPA_segment = 0;
 inode_s2 = inode_s4; /* delay element */
 inode_in = ...; /* clock generation */
 inode_s1 = !inode_in; /* inverting gate */
 inode_s3 = inode_s1 && inode_s2; /* and gate */
 inode_s4 = !inode_s3; /* inverting gate */
 }
 if (NAPA_abs_loop_index % 2LL == 0LL) { /* decimate by 2 */
 NAPA_segment = 1;
 inode_out = inode_in && inode_s4; /* and gate */
 }
 NAPA_abs_loop_index++;
 } while (some_condition); /* end of main loop */
 ...
 return EXIT_SUCCESS;
}

17

Note that the position of the code generating the signal "inode_s2" introduces naturally the specified delay,
with other nodes having an immediate action. Code producing the signal "inode_out" is placed in a separate
segment and is effectively running at half the speed of the first part.

The Simulation Control

The simulation is controlled with the help of variables. Variables are used to control sources (e.g. "dc",
"sine", "...") to parametrize nodes ("gain", "clip" ,"...") and to control the simulation or the data flow. NAPA
user-defined analysis tools (smart tools) are especially built to take control of the simulation. The output
node of a smart tool is a flag indicating the status of the ongoing process. Built-in synchronization
mechanisms allow perfect synchronization between concurrent analysis tools. The simulation loop is
controlled by a termination condition. For a complete example, see appendix D..

NAPA in a Computer Network

NAPA output is generally directed to files. If a large volume of output is expected, it could be important that
the simulation output does not travel across a network, especially if the network is slow.

The output stream could severely limit the speed of execution of the simulation. Avoid outputting too
large amounts of data (especially to the screen), use an event condition to limit the amount of output, etc.

NAPA Compiler Command Line

The NAPA command line requires one parameter and several options:

% NAPA_compiler_pathname <“input_source_file”> [options]
% NAPA_compiler_pathname < -help >

Where ‘options’ are:

-h[dr] <header_directory_pathname>
-n[et] <net_directory_pathname>
-g[en] <generator_directory_pathname>
-d[ir] <generic_directory_pathname>
-u[ser] <“user_name_in_one_single_word”>

The input source file is a NAPA file containing the user's NAPA source and the library pathnames are
respectively the pathnames of the directories "Hdr" ('-h' option), "Net" ('-n' option) and "Gen" ('-g' option).
These directories contain the reusable headers, cells and cell generators. Defaults for these directories are
respectively 'Hdr', 'Net' and 'Gen' referred to the generic directory pathname if mentioned by the '-d' option,
otherwise referred to the current working directory.
The user name (with option '-u') will be added automatically to output files to complement the
documentation. Any underscore in the user name will be replaced by a white space.

Scripts are available to launch the simulation in several environments (currently WINDOWS). They will not
be described here as they can be heavily customized.

A second set of options provides information about the compiler:

-a[uthor]

18

-b[uilt]
-help

Three other options are possible,

-l[ist]
-e[xpand]
-v[erbose]

The first one lists the nodes, variables and variable updates on the standard output. The location of the
definition of each identifier is also output. No C file is generated. This option cannot be used in conjunction
with '-e'.
The second one expands the source net files (main, cells and data cells) into a single expanded netlist on the
standard output. The names of the identifiers are exactly the names produced during a regular compilation
of NAPA. It helps to understand the expansion process and tracks the final identifier name generation. No C
file is generated. This option cannot be used in conjunction with '-l'.

The last option switches the compiler to verbose mode. It details the compilation process somewhat and has
limited interest for a regular user.

Several database organizations are possible; here is an example for a DOS platform:

/home/NAPA  /Simulate/NapaDos/Hdr contains generic header files (*.hdr)
 /Simulate/NapaDos/Net contains generic cell files (*.net)
 /Simulate/NapaDos/Gen contains generic generator files (*.exe)
 /Simulate/NapaDos/Dos contains NAPA compiler and scripts

/home/ jdoe  /jdoe/NAPA/project_1 contains project’s source files

contains project’s header files
contains project’s cell files

contains project’s generator files

contains simulation output

(*.nap)
(*.rom)
…
(*.hdr)
(*.net)
(*.dat)
(*.c)
(*exe)
(*.out)

 /jdoe/NAPA/Hdr contains user’s header files (*.hdr)
 /jdoe/NAPA/Net contains user’s cell files (*.net)

(*.dat)
 /jdoe/NAPA/Gen contains user’s generator files (*.exe)

(*.c)

To run NAPA, set the working directory to ‘/jdoe/NAPA/project_1’. Write for example in the command line:

% /Simulate/NapaDos/dos/NapaDos.exe myfile.nap -u “JDoe” -d /Simulate/NapaDos
> myfile.c 
% gcc myfile.c -o myfile.exe 
% myfile.exe > myfile.out 

Where 'NapaDos.exe' is the name of the NAPA compiler, 'gcc' is the ANSI-C compiler and 'myfile.nap' is
the netlist to be simulated. Standard output of the simulator is redirected to 'myfile.out'. On other platforms,
the command could be slightly different. As the C compiler has many options, it is particularly interesting to

19

choose carefully the optimization level. Optimizations reduce the execution time but could slow down the
compilation significantly. Avoid hazardous optimizations, of course. Some tuning could be necessary.

Using a data macroprocessor like MAC (optional):

% /Simulate/MacDos/dos/MacDos.exe myfil.nap -c -l > myfil.tmp 
% /Simulate/NapaDos/dos/NapaDos.exe myfil.tmp -u “JDoe” -d /Simulate/NapaDos > myfile.c

% gcc myfil.c -o myfil.exe 
% myfil.exe > myfil.out 

Using the appropriate script, the command could be as simple as:

% NAPA myfile 

NAPA Portability

NAPA is built to be portable. It is the user's responsibility to write new headers with ANSI-C syntax. It is
also their responsibility to use file names compatible with WINDOWS and UNIX in order to ensure perfect
compatibility of the netlists if needed. Some compatibility problems are expected on operating systems
using different file naming conventions than UNIX.

NAPA runs on WINDOWS machines for instance if you use a GNU compiler, as the pathname conventions
internal to the program follow the UNIX syntax.

C limitations: Important Warnings!

In principle, NAPA is organized to get full access to C through several ports. Dedicated nodes ("const",
"dc", "algebra", "ialgebra", "dalgebra" and "test"), variables ("dvar", "ivar", "update" and "event"), several
instructions ("terminate", "drop", "assert"...) and conditional expressions ("...when") accept regular C
expressions. Other nodes ("duser", "iuser", "dtool", "itool", "init", "call"...) trigger calls to C functions.

Some limitations are considered to avoid side effects.

The NAPA parser will reject the unary operators '++' and '--' inside a C expression placed in a NAPA netlist.

A C function placed in an expression of a NAPA netlist will be misinterpreted if it has the same name as a
node or a variable. There are several specific checks but there are still some possibilities to have a name
collision resulting in a C compiler error.

C Casting: Important Warnings!

Although ANSI-C is safer than old K&R C, some potential problems remain. For instance, casting remains
a potentially dangerous operation in C expressions:

Casting, first way to get unexpected results:

node a dc (digital) 5
node b dc (digital) 3
node c dalgebra a/b // cast to double by “dalgebra”

20

The resulting value of ‘c’ is 1.0, not 1.6667 as the integer division is applied before the casting. Every time
it is possible, NAPA will refuse an integer number when a real number is expected. But the node
“dalgebra” accepts a C expression. Nothing can be done to detect this potential problem.

Here you should prefer:

node a dc (digital) 5 // cast to digital
node b dc (digital) 3 // cast to digital
node c div a b

The resulting value of ‘c’ is now 1 as node “div” divide two digital nodes ‘a‘ and ‘b’. Clean and safe.

node a dc 5.0 // cast to analog
node b dc 3.0 // cast to analog
node c div a b

The resulting value of ‘c’ is now 1.6667 as node “div” divide two analog nodes ‘a‘ and ‘b’. Clean and safe.

Casting, a second way to get unexpected results:

node s1 dalgebra rand_uniform(-100.0, 100.0) // random noise
node s2 ialgebra s1 // cast to long long int by ‘ialgebra’

Histograms of ‘s2’ show twice as much occurrences of 0 than any other numbers! Node “ialgebra” is
making a C casting to long long int. Numbers between -0.9999 and 0.9999 produce 0! This is not what we
were asking for!

Using dedicated NAPA primitives removes the problem:

node s1 dalgebra rand_uniform(-100.0, 100.0) // random noise
node s2 dtoi s1

The node “dtoi” makes a perfect mathematical rounding. Only numbers between -0.4999.. and 0.4999..
produce 0.

21

NAPA Process Flow

The simulator executable is generated through a two-stage compilation process:

1. NAPA Compilation: The NAPA compiler processes the netlist files and converts them into C
source code

2. C Compilation: The ANSI-C compiler compiles the generated C code to produce the final
executable simulator

This two-step process allows NAPA to leverage the optimization capabilities of standard C compilers while
providing its own high-level simulation language.

22

NAPA Main File NAPA cell

NAPA header

NAPA Compiler

C Code

-ANSI-C Compiler

Output File

reusable

NAPA Language

-ANSI-C Language

Binary CodeExecutable

NAPA Main File NAPA cell

NAPA header

NAPA Compiler

C Code

-ANSI-C Compiler

Output File

reusable

NAPA Language

-ANSI-C Language

Binary CodeExecutable

The NAPA File System

A NAPA netlist can be highly hierarchical. The compiler supports several pathname formats to locate files:

1. Absolute Reference

Syntax: “/absolute/path"
Example: "/home/jdoe/examples/anycell.net"

2. Generic Library Reference

Syntax: <filename>
Examples:

 <wondertool.hdr> for headers in a header call
 <wondercell.net> for cells in a cell call
 <wondercell.gen> for generators in a generator call
 tor

3. Root Directory Reference

Syntax: "filename"
Example: "mydata.dat"

4. Main Directory Reference

Syntax: "~/filename"
Example: "~/mycell.net"

5. Current Cell Directory Reference

Syntax: "./filename"
Example: "./mytool.hdr"

Directory Definitions and Processing

• Generic Library: Three specialized libraries containing reusable resources: the header library, the
cell library, and the generator library. The pathnames of these directories are passed to the NAPA
compiler through the command line.
Generic library references are only valid when calling headers, cells, data cells, or generators.

• Root Directory: The working directory from which the NAPA compiler has been called.
• Main Directory: The directory containing the NAPA main netlist.
• Current Cell Directory: The directory containing the cell currently being processed.

The NAPA compiler processes pathname strings immediately and translates them into pathnames
compatible with the operating system. To help the user, error messages will reference the operating system
pathnames rather than the NAPA file system syntax.

Best Practices

Understanding the NAPA file system is essential when building netlists based on a set of files or directories.
Using the appropriate reference types accurately ensures the ability to copy or relocate file sets while
maintaining proper links between the data.

23

NAPA Instructions

The NAPA instructions are divided in five classes: declaration,
action, control, I/O and format.

The NAPA instructions are one-lined expressions. Keyword representing the expression is the first word of
the line (there is one exception when using register arithmetic). Some of them are used in specific situations
and are not of general interest (in italic below).

alias Declaration

array Declaration

assert Action

call Action

command_line I/O

comment Declaration

data Declaration

debug Declaration

decimate control of simulation flow

declare Declaration

directive Declaration

drop Control of simulation flow

dump Action

dvar Declaration

error Declaration

event Declaration

24

export I/O

format Output format

fs Declaration

ganging Declaration

gateway Control of simulation flow

header Declaration

init Action

inject Action

input I/O

cell interface Declaration

data interface Declaration

interlude Declaration

interpolate Control of simulation flow

ivar Declaration

load Action

NAPA_version Declaration

node Declaration

nominal Control of simulation flow

num_initial Declaration (DEPRECATED)

opcode Declaration

output I/O

ping Declaration

post Action

random_seed Declaration

restart Action

string Declaration

stuck Declaration

synchronize Declaration

25

terminate Control of simulation flow

title Declaration

tool Declaration

ts Declaration

update Action

void Declaration

warning Declaration

26

NAPA Nodes

The NAPA node is the key element of the netlist.

Usage

A node is a NAPA object describing part of the netlist. Nodes are always defined as the output of an object
(see chapter presenting the NAPA concept. The node is representing the object and its output signal
together. It is generally not necessary to predeclare nodes. Internal loop of nodes in the netlist must include
at least one delay. No node contains implicit delay, and “delay” nodes excepted (user defined nodes could
contain delay(s), depending on the code implemented by the user!). NAPA sorts the nodes and determines
the node types (analog or digital) after analysis of the netlist. The compiler is able to detect undetermined
nodes, unauthorized loops, self-referencing node and wrong combination of node types.

Nodes are initialized by default, although user may modify their initialization (see instruction " init"). As
initialization is an important issue, users are urged to read carefully initialization related NAPA
documentation.

node <node_name> <kind> [<parm...>] [<node_name...>]

In the generated C code, NAPA nodes are declared, defined and used with the prefix ‘inode_’ or ‘dnode’
depending on the type: digital (long long integer) or analog (double precision). The NAPA nodes are
translated as in-line C code to obtain better efficiency. This translation is context-dependent and is handled
by the compiler. It means that the compiler handles the syntactic verification, declaration, initialization and
code customization for the user.

NAPA is a strongly typed language. Nodes are represented in the simulator as

analog node NAPA analog
type

(C double precision) prefix ‘dnode_’

digital node NAPA digital type (C long long integer) prefix ‘inode_’

Chameleonic nodes

As often as possible, NAPA nodes have been implemented in such a way that they are conforming to the
type of their inputs. Such nodes are called “chameleonic nodes”. They can be used in both analog and
digital context.

27

Nodesets

A set of nodes may be defined in a single instruction. As the description could be more cryptic, it is
recommended essentially to simplify the construction of generators.

node[4] out[2..5] sum in[4..1] in0

This is equivalent to the set of lines:

node out2 sum in4 in0
node out3 sum in3 in0
node out4 sum in2 in0
node out5 sum in1 in0

Nodesets involving cell or generator are not authorized to avoid severe side effects. The declaration of
width must match the iterators when they are used in the definition of the nodeset.

In the example above, the width is declared as 4 and the iterators have effectively the same width.

Other examples of application of the nodesets:

node[2] (out[1..2]) sum a1..4 b[4..5] // example with parenthesis

This is equivalent to the set of lines:

node (out1) sum a1 a2 a3 a4 b4
node (out2) sum a1 a2 a3 a4 b5

This example uses the concept to file names and variables:

ivar npts1 1000
ivar npts2 10000

node[2] void itool fft “file[1..2].out” in[4..5] ref npts[1..2]

This is equivalent to the set of lines:

ivar npts1 1000
ivar npts2 10000

node void itool fft “file1.out” in4 ref npts1
node void itool fft “file2.out” in5 ref npts2

Pseudo-Nodes

Some nodes (“cell” and “generator”) do not behave as true NAPA nodes. They are triggering the
instantiation of a NAPA netlist. The syntax is depending directly to the way the “cell” (or the “generator”)
interface is written (see cell node). Although it is preferred to follow syntax similar to a regular node, with
output on the left side and parameters and inputs on the right side, the user can define a cell with several
outputs. As a regular node has only one output, the syntax must be changed: output nodes will figure also on
the right hand:

28

node out1 cell mycel1 “cellfil1.net” out2 in1 in2 parm1

It is preferred and strongly recommended to use another syntax to stress the fact that the cell has multiple
outputs by writing the cell interface differently:

node void cell mycel2 “cellfil2.net” out1 out2 parm1 in1 in2

The node ‘void’ is now corresponding to a dummy node in the cell netlist. See also paragraph below.

Unnamed and Unused Signals

NAPA flags unused nodes or variables. To suppress the corresponding warning messages, a special
identifier, “void” could be used as node or variable name. The simulator will attribute automatically an
unambiguous and unique internal name for the corresponding C variable.

Another way to suppress the warning is to place the node or variable identifier in the definition between
parentheses. The node or variable can therefore still be used. This is to be used with care as the absence of
warning could hide a true error.

dvar (opt) 1.0 + b
node (err) sub out ref

node void itool fft "stdout" x 1.0 100000

Identifier “void” is used in the definition of node “mux” to define an empty input slot.

Identifier “void” is also used in the instruction “post” where it has a specific use, and is also a specific
instruction.

Automatic Nodes

To simplify the netlist, NAPA provides three “automatic nodes”. The NAPA compiler automatically
generates these nodes. It generates signals “One”, “Zero” and “Ground” if it happens they are used in the
netlist.

One DIGITAL constant value 1

Zero DIGITAL constant value 0

Ground ANALOG constant value 0.0

The NAPA compiler processes these signals exactly as they were issued from normal DC nodes
but THEY CANNOT BE DEFINED OR REDEFINED BY THE USER:

node One dc (digital) 1
node Zero dc (digital) 0
node Ground dc (analog) 0.0

29

Bit Field Extractor

Single bit from any digital node can be accessed through the “bit field extractor”. Respective nodes are
automatically created to get the access. The notation is:

...<node_name> : <integer>...

The internal representation of a NAPA node or variable is based on the C “long long integer”, i.e. 64 bits
with 2 complement coding. Bit 0 is the least significant bit.

An example of bit field use:

...
node d4 sum d1 d2 d3
node d5 nand d2:4 d2:7 // to address 4th and 7th bits of d2
output “stdout” d4 d2:4 d2:5 d5
...

Node Kind List

NODE TYPE BRIEF DESCRIPTION

1. adc N levels signed analog to digital converter R  I

2. algebra generalized mathematical C expression Chameleonic

3. alu user-defined ALU Chameleonic

4. and and of N input nodes (Boolean logic) I  I

5. average Average of N input nodes R  R

6. bshift barrel shifter I  I

7. btoi N bits to integer conversion I  I

8. buffer non inverting buffer (Boolean logic) I  I

9. bwand bit wise and (Boolean logic) I  I

10. bwbuffer bit wise non inverting buffer (Boolean logic) I  I

11. bwinv bit wise inverter (Boolean logic) I  I

12. bwnand bit wise nand (Boolean logic) I  I

13. bwnor bit wise nor (Boolean logic) I  I

14. bwnot strictly equivalent to “bwinv” (Boolean logic) I  I

15. bwor bit wise or (Boolean logic) I  I

16. bwxnor bit wise xnor (Boolean logic) I  I

17. bwxor bit wise xor (Boolean logic) I  I

18. cell sub circuit instantiation Pseudo Node

19. change watchdog X  I

20. clip clipping Chameleonic

21. clock clock generation (sequence of 0 and/or 1)  I

22. comp comparator X  I

23. const Constant with optional casting  I or R

24. copy signed copy Chameleonic

25. cosine cosine wave generator R  R

30

26. dac N levels signed digital to analog converter I  R

27. dalgebra generalized C expression - casting to real X  R

28. dc DC source with optional casting  R or I

29. delay simple or multiple delay Chameleonic

30. differentiator non delayed non inverting differentiator Chameleonic

31. div division of 2 input nodes Chameleonic

32. dtoi real to integer conversion R  I

33. dtool equivalent to duser but not reset at restart X  R

34. duser user-defined analog type function X  R

35. equal equality of 2 input nodes X  I

36. fzand and of N input nodes (Fuzzy logic)2 R  R

37. fzbuffer non inverting buffer (Fuzzy logic) R  R

38. fzinv strictly equivalent to “fznot” (Fuzzy logic) R  R

39. fznand nand of N input nodes (Fuzzy logic) R  R

40. fznor nor of N input nodes (Fuzzy logic) R  R

41. fznot negation of input node (Fuzzy logic) R  R

42. fzor or of N input nodes (Fuzzy logic) R  R

43. fzxnor xnor of 2 input nodes (Fuzzy logic) R  R

44. fzxor xor of 2 input nodes (Fuzzy logic) R  R

45. gain gain Chameleonic

46. generator sub circuit generation and instantiation Pseudo Node

47. hold hold (and track) Chameleonic

48. ialgebra generalized C expression - casting to integer X  I

49. integrator non delayed non inverting integrator Chameleonic

50. inv strictly equivalent to “not” (Boolean logic) I  I

51. itob bit extractor from integer I  I

52. itod integer to real type conversion I  R

53. itool equivalent to iuser but not reset at restart X  I

54. iuser user-defined digital type function X  I

55. latch SR latch (Boolean logic) I  I

56. lshift left shift element I  I

57. max maximum of N input nodes Chameleonic

58. merge merge N input nodes from exclusive segments Chameleonic

59. min minimum of N input nodes Chameleonic

60. mod modulo division of 2 input nodes Chameleonic

61. muller C Muller, N input nodes (Boolean logic) I  I

62. mux multiplexer (N inputs) Chameleonic

63. nand nand of N input nodes (Boolean logic) I  I

64. noise source of noise (normal)  R

65. nor nor of N input nodes (Boolean logic) I  I

66. not negation of input node (Boolean logic) I  I

67. offset DC level shifter Chameleonic

68. or or of N input nodes (Boolean logic) I  I

69. osc oscillator R  R

70. poly polynom of order N Chameleonic

71. prod multiplier, product of N input nodes Chameleonic

2 NAPA handles fuzzy logic gates (Zadeh operators) but has no other particular fuzzy logic intelligence.

31

72. quant quantifier Chameleonic

73. ram random access memory Declared

74. ram2 dual port random access memory Declared

75. rect rectifier Chameleonic

76. register data register Chameleonic

77. relay relay, normally closed Chameleonic

78. rip bit wise rip bus I  I

79. rom read only memory Declared

80. rom2 dual port read only memory Declared

81. rshift right shift element without rounding I  I

82. rshift1 right shift element with rounding I  I

83. rshift2 right shift element with special rounding I  I

84. sign sign of input X  I

85. sine sine wave generator R  R

86. square square wave source  R

87. step step function source  R

88. sub subtraction of 2 input nodes Chameleonic

89. sum sum of N input nodes Chameleonic

90. test generalized C expression - casting to integer X  I

91. toggle toggle flip-flop (Boolean logic) I  I

92. track track (and hold) Chameleonic

93. triangle triangle wave source  R

94. trig trigger X  I

95. uadc N levels unsigned analog to digital converter R  I

96. udac N levels unsigned digital to analog converter I  R

97. wsum weighted sum of N input nodes Chameleonic

98. xnor exclusive nor of N input nodes (Boolean logic) I  I

99. xor exclusive or of N input nodes (Boolean logic) I  I

100. zero insertion of zeroes Chameleonic

32

NAPA User's Variables

A simulator is controlled by parameters. These
parameters are not signals to process. In NAPA,
they are called ‘variables’.

Usage

Besides nodes, one can specify user's variables. NAPA user's variables behave just like their C counterparts.
Variables are not part of the node netlist description. They are used as object parameters or simulation
control. Their declaration is mandatory. By default, the variables are not updated, but update is possible.
The variable definition is a C expression possibly containing other variables, nodes or global variables.
NAPA global variables are predefined in the generated C code and available to user. Self-referencing is not
authorized in the definition of a variable but perfectly legal for an update:

dvar v1 v1 + v2 ILLEGAL!

ivar v3 0
update v3 v3 + 1 PERFECTLY OK

Variable Type

Three types of user's variables are available: digital, analog or string variables. Variables are represented
internally in the C simulator as:

dvar NAPA analog type (C double precision) prefix ‘dvar_’

ivar NAPA digital type (C long long integer) prefix ‘ivar_’

string NAPA string type (String of C char[]) prefix ‘svar_’

The NAPA compiler handles register arithmetic, i.e. arithmetic performed on digital numbers coded with a
limited number of bits..

33

Register Arithmetic

The simulation of digital filters requires to perform
arithmetic on digital numbers coded with a limited
number of bits.

Width limited nodes and variables

Digital nodes and variables can be coded on a limited number of bits. Without any specific declaration, the
NAPA compiler declares the digital nodes and variables as ANSI-C long long integer. Following ANSI-C
standard, the “long long integer” is coded with a minimum of 64 bits. The NAPA compiler relies on the
operators of the C compiler to perform the arithmetic and logic operations. It means that it is never
straightforward to emulate a processor wider than 64 bits.

Nevertheless, it is possible to emulate the behavior of limited register width arithmetic by declaring the
digital nodes or variables as width limited. Of course, it is not allowed to limit the coding of analog nodes
and variables or to extend the coding of digital values to a number of bits beyond the “long long integer”
size.

To limit the number of bits, it is necessary to declare the width of the nodes and the variables:

‘(‘width’)‘ “node” <nod_nam> <node_kind_returning_a_digital>…
‘(‘width’)‘ “ivar” <var_nam> …

‘<‘width’>‘ “node” <nod_nam> <node_kind_returning_a_digital>…
‘<‘width’>‘ “ivar” <var_nam> …

Where parenthesis applies for 2 COMPLEMENT SIGNED CODING. Angle brackets apply for UNSIGNED
CODING.

(16) node r1 gain m9 a // 2 complement 16 bits
<16> node r2 offset off b // unsigned 16 bits

(16) ivar m9 -9 // 2 complement 16 bits
<16> ivar off 127 // unsigned 16 bits

35

Overflow is causing the proper ROLL-OFF particular to the coding, for example, when incrementing value 0
coded with 3 bits:

3 bits 2 complement 3 bits unsigned

0002 010 0002 010

0012 110 0012 110

0102 210 0102 210

0112 310 0112 310

1002 -410 1002 410

1012 -310 1012 510

1102 -210 1102 610

1112 -110 1112 710

0002 010 0002 010

0012 110 0012 110

...

NAPA handles a high level concept of the number, i.e. the decimal representation coded as a “long long
integer”. The result of a high level operation like “min” or “max” has not the same meaning to a 2
complement or an unsigned number. It means that the user must take care to choose the proper coding.

Arithmetic or logic operations are performed with ANSI-C 64 bits operators on 64 bits code. Appropriate
sizing (4 bits in the example below) is then applied. Results are coded in a 64 bits 2-complement format.
Decimal representation corresponding to this 64 bits format is then equal to the value obtained using a
smaller register width.

Another example:

...
(4) node sevena dc (digital) 7
(4) node fivea dc (digital) 5
<4> node sevenb dc (digital) 7
<4> node fiveb dc (digital) 5
...
(4) node a12 sum sevena fivea // signed integer clipping
<4> node b12 sum sevenb fiveb // unsigned integer clipping
...
output “stdout” sevena fivea sevenb fiveb a12 b12
...

36

Using 4 bits wide registers and ALU, the operations are:

register “sevena” 01112

register “fivea” 01012

register “sevenb” 01112

register “fiveb” 01012

register “a12” 11002 OVERFLOW! decimal correspondence: -410

register “b12” 11002 decimal correspondence: 1210

Using 32 bits wide registers and ALU, the operations are EMULATED as following:

register “sevena” 0000 0000 0000 0000 0000 0000 0000 01112

emulating 4 bits 0000 0000 0000 0000 0000 0000 0000 01112

register “fivea” 0000 0000 0000 0000 0000 0000 0000 01012

emulating 4 bits 0000 0000 0000 0000 0000 0000 0000 01012

register “sevenb” 0000 0000 0000 0000 0000 0000 0000 01112

emulating 4 bits 0000 0000 0000 0000 0000 0000 0000 01112

register “fiveb” 0000 0000 0000 0000 0000 0000 0000 01012

emulating 4 bits 0000 0000 0000 0000 0000 0000 0000 01012

register “a12” 0000 0000 0000 0000 0000 0000 0000 11002

emulating 4 bits 1111 1111 1111 1111 1111 1111 1111 11002 equivalent to -410

register “b12” 0000 0000 0000 0000 0000 0000 0000 11002

emulating 4 bits 0000 0000 0000 0000 0000 0000 0000 11002 equivalent to 1210

The output of the NAPA simulation is:

...
(output)
...
... sevena fivea sevenb fiveb a12 b12
... 7 5 7 5 -4 12

The 4 bit registers are correctly emulated. But emulation is not strictly equivalent to the hardware, as it is
mandatory to know the type of coding the user is emulating.

To be safe, all bit wise operations should be width limited as unsigned code.

37

List of NAPA Instructions

A NAPA netlist is a sequence of one-lined instructions describing the network to be simulated, its activation
and the analysis tools if any.

Each instruction is described by one line that begins with a NAPA keyword, followed by the identifiers or
parameters required by the instruction. A continuation character (“. . .”) can extend the instruction to the next
line. Blank lines or comment lines may separate instructions. Nodes and variables may be considered as
instructions.

alias

This instruction aliases node or variable for better readability.

alias <name> <target_node>
alias <name> <target_var>

The new name of the aliased node or variable may be used in the NAPA netlist in replacement of the target.

It is useful to replace a complex name issued for a local variable in a cell: the local name is ‘promoted’ to
global. Please note that it is impossible to alias twice a node or a variable.

File "myfile.nap"

…
alias gain modulator__integrator__gain
…

array

The “array” statement must be used to declare the type and the size of the “ram” and “rom” nodes.

array (analog) <name> ‘[‘<size>’]’ [“filpathnam”]
array (digital) <name> ‘[‘<size>’]’ [“filpathnam”]
array (hex) <name> ‘[‘<size>’]’ [“filpathnam”]

It is also used to gang parameters to transfer by address to a user function (identical to instruction
“ganging”, to be preferred):

38

array (pointer) <name> ‘[‘<size>’]’ <nod_nam | var_nam | arr_nam...>
array (pointer) <name> ‘[]’ <nod_nam | var_nam | arr_nam...>

Qualifier “(hex)” is equivalent to “(digital)” but indicates to the NAPA compiler that the initialization file
contains hexadecimal data (addresses remaining digital type). Hexadecimal data should follow C syntax
(number beginning by ‘0x’).

The size must be a constant digital type. At the exception of array of pointers, the size of arrays may be
defined by an “ivar” but this variable cannot be updated.

The file contains the data. This file is mandatory for the ROM. For the RAM, the file corresponds to an
initialization and is optional.

array (digital) rom1[2048] “file.rom”
array (analog) ram2[64]

ivar sz 100
array (digital) ram3[sz]

The input file must contain a number of data matching the declared array size. This file may contain
comment lines (beginning by ‘#’) but NO blank lines. A line must contain two numbers: the address and the
corresponding data. These numbers may be followed by right hand comment beginning with ‘//’. Addresses
must be ordered. Address range is [0....size-1].

The NAPA compiler will not read the content of the file itself but will instruct the simulator to do it at run
time.

For example, an 8 words ROM:

array (digital) myrom[8] “prog.rom”

with the file “prog.rom”:

ROM program - revision 1.20 -
address data

0 14
1 132345
2 23
3 54365 // corrected by JDoe (10/2/1994)
4 28991
6 0
7 0

#

Array of pointers allow to gang parameters to transfer them by address to a function, a user defined function
or a tool. The declaration of the size is optional. It corresponds to the exact number of items. Ganging of
different types of nodes, variables and other arrays of pointers are allowed.

...
dvar c1 1.1
dvar r2 2.2

dvar freq 1.2345e3

string nam “rc”

39

string tag “typic”

dvar wt _2PI_ * freq * TIME
update wt
...
array (pointer) Coef[3] nam c1 r2
array (pointer) Num[2] n1 n2
array (pointer) Den[5] d1..5

array (pointer) Equ[4] wt tag Num Den
array (pointer) All[] Equ tag s1
...
node s1 sum a b
node out duser myfun in Coef All 54321.0
...

Parameters ganged in an array of pointers may referenced by their numbers. An example is shown below:

...
array (pointer) Num[2] a b
array (pointer) Den[5] d1..4
array (pointer) Equ[4] Num Den
...
node s1 sum b d5 Num.2 // second parameter of array Num, i.e. b
output “stdout” Equ.5 a // fifth parameter of array Equ, i.e. d3
...

NOTE:
If a file is declared for a RAM, data will be read at initialization.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist. For instance, it is not
necessary that the corresponding “ram” or “rom” nodes appear before the array instruction.

assert

The “assert” statement is used as watchdogs to detect abnormal conditions during simulation run-time for
debug purpose.

assert <“message”> <C_Boolean_expression
assert <“message”> <C_Boolean_expression> when <event_condition>

If the C Boolean expression returns value FALSE, then simulation is stopped, the message (a string constant)
is sent to standard error output “stderr” and normal termination occurs. Expression can be anything
returning an integer value: expression, or C function.

assert “Too long!” LOOP_INDEX < 1000000LL

assert “Wrong!” OK(sigval)

“assert” can be inactivated by defining the C preprocessor directive “NO_ASSERT” in user's profile header
(see “header”) or using the instruction “directive”:

40

directive NO_ASSERT

“assert” can be advantageously used in combination with statement “gateway” to control the exit point of
the simulation. Combination of “assert” and “dump” instructions eases an eventual debug.

NOTE:
The message is a constant string where it is NOT possible to use variable indirection (#...).

LOCATION DEPENDENT INSTRUCTION

This instruction is depending on its position inside the netlist. It is segment dependent. Instructions “assert”
in the variable updates section but before any node updates or time domain output. During first loop of the
simulation, the condition is ignored to avoid unwanted triggering.

call

You can call a user-defined function in the same way that you update a variable, using instruction “call”.
This instruction is not used very often as NAPA offers more powerful features (see “duser”, “iuser”, “itool”
and “dtool”) and its usage is NOT recommended. User-defined-function code is located inside a header file
which has to be declared inside a “header” instruction. The compiler processes calls in a way similar to
variable updates.

call <return_variable> <C_function>
call void <C_function_returning_void>

For example:

header <Napa.hdr>
header “hello.hdr” // file containing code of function “greetings”
...
call void greetings(1)
...

Function “greetings()” being a function returning void, defined in the user's ANSI-C header file:

file “hello.hdr”

#ifndef __HELLO_HDR__
#define __HELLO_HDR__

/* *** FUNCTION PROTOTYPE ******************************** */
void greetings(int);

/* *** FUNCTION DEFINITIONS ****************************** */
void greetings(int choice){
 switch choice {
 case 1: fprintf(stderr, “Hello John\n”); break;
 case 2: fprintf(stderr, “Good bye\n”); break;
 default: fprintf(stderr, “Error\n”); break;
 }
 return;
}
/* *** */
#endif /* __HELLO_HDR__ */

41

The calls are sorted with the variables. They are executed in the section of code with variables, there is no
guarantee that calls will be executed in the order you place them. Functions called by instruction “call” are
not initialized automatically. These functions are not usually returning any value although this is perfectly
possible. It is important to note that more powerful primitives supersede this instruction. Therefore the
usage of “call” should be limited to very specific situations.

LOCATION DEPENDENT INSTRUCTION

This instruction is depending on its position inside the netlist. It is segment dependent. “call” and “update”
instructions are executed in the order they appear in the netlist.

command_line

command_line <var_name...> | fs | ts | void

This instruction allows the simulator produced by NAPA to take parameters from the UNIX or DOS
command line. This is interesting when the executable is given for evaluation to a third party. The variables
must be declared using “dvar”, “ivar” or “string” instructions. These declarations may not assign any value
but an optional comment. Sampling frequency “fs” may be input from the command line. In this case no
value should be assigned to sampling frequency in the NAPA netlist.

Use “void” identifier to indicate that the stand-alone simulator does not take any input.

For example, if the NAPA file “my_module.nap” contains the following instructions:

File "my_module.nap"

...
fs
...
command_line fs infile value1
...
command_line np
...
string infile “some optional string comment” // input file
ivar np “another some optional string comment” // parameter
dvar value1 “and a third optional string comment” // value
...

The executable “my_module.exe” produced from the C source will be called as:

% my_module.exe 1.0e6 “foo.dat” 1.2345 18 
%

The value 1.0e6 will be assigned to sampling frequency, “foo.dat” will be assigned to the string variable
<infile>, the value 1.2345 to the analog variable <value1> and the value 18 to the digital variable <np>.

See also instruction “random_seed” to configure the random number generator properly.

LOCATION INDEPENDENT INSTRUCTION

42

comment

This instruction publishes a comment during the parsing of the netlist and writes a message on the “stderr”
output. Comments in a job are concatenated. Use “\n” to cut in lines.

 comment “<some_message>”

This instruction documents also the usage of the stand-alone simulator created when the instruction
‘command_line’ is instantiated.

A C macro ‘COMMENT’ is defined accordingly in the C produced by NAPA.

File "opamp.dat"

…>
comment “here is an example of comment,\n”
comment “a second one\nand a third one\n”
…

data

data <“file_pathname”> parameters …
data <“file_pathname”> names::parameters ...

The first syntax corresponds to the transfer of parameters by position. The second syntax corresponds to the
transfer of parameters by name.

This instruction is intended to instantiate sets of variables. This instruction is related to pseudo-node “cell”.
Only variable definitions and related instructions are allowed inside the data file. In particular, it is
forbidden to define any nodes nor to use any control instructions (like “drop”, ”decimate”, ...). The first line
of the data file is the data cell interface and must begin by “data interface” keywords followed by formal
parameters. For more information concerning this instruction, see the pseudo-node “cell” although the
pseudo-node “cell” does not support the transfer of parameters by name.

In the following examples, the instruction “data” is used to call the data related to an opamp, the data
depending on a bias current.

File "opamp.dat"

data_interface $gm $gds $ibias

dvar $isqr $ibias * $ibias
dvar $isqrt pow($imax, 0.5)
dvar $gm -296.2e-6 + 233.3e-6 * $isqrt - 1.220e-6 * $ibias
dvar $gds -13.16e-9 + 1.187e-9 * $ibias + 2.322 * $isqr

Here is the instantiation of this data cell with a transfer of parameters by position, the parameters must be
ordered in the exact order of the data cell parameters:

43

...
dvar ib 10e-6
data “opamp.dat” gm1 gds1 ib
...

and the instantiation of this data cell with a transfer of parameters by name. The names must correspond to
parameters in the definition of the data cells:

...
dvar ib 10e-6
data “opamp.dat” ibias::ib gm::gm1 gds::gds1
...

It is important to note that in this case of transfer by name that the number of parameters of the data cell
may be larger than the number in the instantiation list. It is therefore easier for a data cell to be used in
different simulation netlists!

This instruction obeys to the NAPA file system. In the following examples, the first call points to a file
located in the main directory, the second call points to the current cell directory, the third call points to the
root directory , i.e. the working directory where the NAPA command has been invoked:

data “~/opamp.dat> v1 v2
data “./opamp.dat” v1 v2
data “opamp.dat” v1 v2

Both the instantiation parameters and the formal parameters may contain iterative identifiers:

File "file1.dat"

data_interface $gain $h0..3 $scale

dvar $gain 1000.0
dvar $h0 0.00*$scale
dvar $h1 1.01*$scale
dvar $h2 2.01*$scale
dvar $h3 3.01*$scale

...
data “file1.dat” parm0..4 0.50
...

This is equivalent to

File "file2.dat"

data_interface $gain $h0 $h1 $h2 $h3 $scale

dvar $gain 1000.0
dvar $h0 0.00*0.50
dvar $h1 1.01*0.50
dvar $h2 2.01*0.50
dvar $h3 3.01*0.50

44

...
data “file2.dat” parm0 parm1 parm2 parm3 parm4 0.50
...

LOCATION DEPENDENT INSTRUCTION

debug

debug <debug_level_number | identifier …>

The “debug” statement is adding a C preprocessor directive in the output C program for each entry, using
‘DEBUG_MODE_’ as prefix.

This is practical when debugging a new user's header file. Use the instruction “debug” to activate the
appropriate debugging level. The identifier, or the number, is used as suffix to form a macro identifier in the
output C program.

debug 2

This will trigger, in the code generated by NAPA, the definition of the macro:

#define DEBUG_MODE_2

debug SAMPLING
debug TOOL

debug SAMPLING TOOL

The last two examples will trigger, in the code generated by NAPA, the definition of two macros:

#define DEBUG_MODE_SAMPLING
#define DEBUG_MODE_TOOL

The user should consult the documentation of the user-defined functions or tools contained in the header
files to obtain the list of the debug parameters corresponding to these functions.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in a netlist but not in a data cell.

decimate

Keyword “decimate” introduces a new segment in the netlist. Nodes and variables are processed by
segment (see chapter describing the concept of NAPA, page 11). Decimation can be specified simply by
putting a line with the keyword “decimate” followed by the decimation factor followed if needed by an
offset, i.e.

decimate [fs] <decimation_factor> [<decimation_initial_value>]

Decimation factor must be a strictly positive integer CONSTANT. No variable is allowed. The decimation
initial value is optional (default = 0) but must be also a positive integer constant. It allows the initialization
of the corresponding decimation counter to a value other than 0 in the generated C code.

45

NAPA is able to compute automatically the local sampling frequency determined by the decimate factor.
Anything that follows the “decimate” line will only be evaluated at the decimated rate. See also appendix A,
page 149, for more information. Decimation factor is relative to the previous segment rate, excepted if the
keyword ‘fs’ is added , in this case it refers to the absolute sampling frequency defined by instruction ‘fs’.

For example:

segment running at sampling frequency fs
...
decimate 16
...
segment running at sampling frequency fs/16

segment running at sampling frequency 4MHz
...
fs 4.0e6
...
interpolate 3
...
segment running at sampling frequency 12MHz
...
decimate fs 4
...
segment running at sampling frequency 1MHz

LOCATION DEPENDENT INSTRUCTION

This instruction modifies deeply the behavior of the simulation. Be careful to place this instruction at the
appropriate location in the netlist.

declare

It is generally not necessary to declare nodes types in NAPA. This instruction is used mainly to document
complex or highly hierarchical user’s defined cells, preventing NAPA to output cryptic error messages by
checking the type of variables or nodes at the highest possible levels.

declare (analog) <identifier_list>

declare (digital) <identifier_list>

declare (string) <identifier_list>

declare () <identifier_list>

declare (constant) <identifier_list>

declare (true) <a_function_returning_a_boolean>

Types of nodes or variables can be declared many times in a netlist. Of course, type declarations must match
together. After the automatic node determination by netlist inspection, the compiler will check that the node
type corresponds to the type given in the declaration. Variable definitions are checked directly against their
declarations. Four kinds of type declarations are possible: (analog), (digital), (string) or ().

The fourth kind means that the type of nodes or variables is not known at the time the netlist was written but
that all the nodes or variables inside the list must have the same type. This is useful when writing cell with
chameleonic nodes.

46

The declaration ‘declare (constant)…’ checks if the elements are defined as constants, i.e. that a variable is
not updated or that a node is a ‘dc’ or a ‘const’ node.

‘declare (true)…’ is the only declaration which is executed at run time, at the very beginning of the
initialization. It is a good way to identify a faulty value before it could hurt.

A first example of type declaration in a cell:

file “mycell1.net”

cell_interface $nodout $nodin $parm1 $parm2

this cell accepts either both digital, either both analog inputs
following declaration will check homogeneity of inputs as soon as
this cell will be instantiated: listed nodes and parameters in
following declaration must be the same type.

declare () $nodin $parm1 $parm2

node $s1 gain $parm1 $nodin
node $nodout offset $parm2 $s1

Another example of type declaration:

file “mycell2.net”

cell_interface $h0..6

declare (analog) $h0..2 $h4
declare (digital) $h3
declare () $h5..6
...

Type declaration is used also when NAPA is unable to determine the type of nodes. It occurs in very few
cases, when loop of chameleonic nodes does not include any hint concerning the type of the signals.

An example of declarations to check the value of an expression:

file “mycell3.net”

cell_interface $in $gain $ndel

declare (analog) $gain
declare (digital) $ndel
declare (constant) $gain $ndel

declare (true) $gain > 0.0
declare (true) ($ndel > 0) && ISEVEN($ndel)
...

Another example of type declaration:

file “mycell2.net”

cell_interface $h0..6

declare (analog) $h0..2 $h4
declare (digital) $h3

It is possible to declare directly a variable as a constant:

47

dvar foo 2.0 &constant
...

LOCATION INDEPENDENT INSTRUCTION when declaring types or constant
LOCATION DEPENDENT INSTRUCTION when using ‘declare (true)…’.

directive

The compilation of user-defined functions is often configured by C macro preprocessor definitions. Using
instruction “directive”, the user can introduce a macro definition inside the produced C code (Another way
is to use a user’s profile contained in a header file).

directive <macro_identifier> [(<parameter>)] [<value>]
directive (<macro_identifier>) [<value>]

Directives with values produce directly the corresponding macro definition. Directives without value
produce an additional definition with suffix “_IS_EMPTY” to ease the programming of user’s function.

Directives are checked for usage from the user’s header file, use parenthesis around the directive identifier
to inactivate this check.

 For example,

...
directive WINDOW BLACKMAN_HARRIS
directive (FOO) 0.0
directive MYFILE “./myfile.dat”
directive REPEAT 10
directive NO_BANNER
directive MYFUN1(x,y,z) x*pow(y,z)
directive MYFUN2(x,y)
...

This source will be translated in the produced C code as:

...
#define WINDOW BLACKMAN_HARRIS
#define FOO 0.0
#define MYFILE “./myfile.dat”
#define REPEAT 10
#define NO_BANNER_IS_EMPTY
#define NO_BANNER
#define MYFUN1(x,y,z) x*pow(y,z)
#define MYFUN2_IS_EMPTY
#define MYFUN2(x,y)
...

This is equivalent to

...
header “my_profile.hdr”
...

Where “my_profile.hdr” is a file containing explicitly the C preprocessor macro definitions.

48

File "my_profile.hdr"

/* *** C header file containing C preprocessor directives ********** */

#ifndef __MY_PROFILE__
#define __MY_PROFILE__
...
#define WINDOW BLACKMAN_HARRIS
#define FOO 0.0
#define MYFILE “./myfile.dat”
#define REPEAT 10
#define NO_BANNER_IS_EMPTY
#define NO_BANNER
#define MYFUN1(x,y,z) x*pow(y,z)
#define MYFUN2_IS_EMPTY
#define MYFUN2(x,y)
...
#endif /* __MY_PROFILE__ */

See also “header” below.

Please note that it is forbidden to use a NAPA keyword as a NAPA directive identifier or to duplicate the
declaration or the definition of a directive. It is not allowed to define a directive referring to a node or a
variable.

The user should consult the documentation of the user-defined functions or tools contained in the header
files to obtain the list of the directives corresponding to these functions.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist. Directives will be placed in
the order they appear in the NAPA netlist.

drop

Keyword “drop” introduces a new segment in the netlist. Nodes and variables are processed by segment
(see chapter describing the concept of NAPA, page 11). The “drop” statement is somewhat similar to the
“decimate” or “interpolate” statement.

drop [fs] <C_Boolean_expression>

If the expression is evaluated ‘TRUE’, then everything below this drop statement in the local segment gets
executed, if not this segment is skipped. Instruction has no effect on other segments below. 'drop' is relative
to the previous segment rate, excepted if the keyword ‘fs’ is added: in this case it refers to the absolute
sampling frequency defined by instruction ‘fs’. It does not refer to any other condition in previous 'drop'
segments.

It is important to note that the 'drop' condition is computed at the beginning of the loop before the update of
nodes or variables. Therefore all references to nodes or variables in this Boolean expression are referring to
values computed in the PREVIOUS loop.

49

 CAUTION:
NAPA is unable to track sampling frequency change due to the use of 'drop'.

LOCATION DEPENDENT INSTRUCTION

This instruction modifies deeply the behavior of the simulation. Be careful to place this instruction at the
appropriate location in the netlist.

dump

The “dump” statement is dumping the content of the simulation into a file. Dump is conditional. Only one
“dump” is authorized inside a NAPA netlist. The “dump” condition can be fired several times during the
simulation. This instruction should be reserved to debug purpose.

dump <“file_name”> TRUE
dump <“file_name”> FALSE
dump <“file_name”> when <event_condition>

<event_condition> is a Boolean combination of events defined by instruction "event".

If the Boolean expression returns TRUE, then the dump will be issued at the end of the main loop.
“dump” produces a file containing C instructions and C preprocessor directives. All nodes and variables
values are dumped. Decimation variables, current time and loop index are also output. This file is
compatible with the instruction “load”.

...
event ev1 LOOP_INDEX / 1000LL
event ev2 TIME > 10.0e-6
...
dump “foo.dmp” when (ev1 && ev2)
...

 CAUTION:

This instruction should be used with care as a misuse can produced a tremendous amount of data...
Therefore the usage of “dump” should be limited to very specific situations.

 TIPS:
 “assert” statement will produce a dump at the exit of the simulation if a “dump” is declared. To produce a
dump only in this case, use a condition which is never TRUE (for instance, use the constant FALSE as
Boolean expression).

LOCATION DEPENDENT INSTRUCTION

Triggering is segment dependent, but the dump will be effectively output at the end of the main loop.

50

dvar, ivar

dvar <var_name>[<initial_value>] [&update | &constant] [&export]
ivar <var_name>[<initial_value>] [&update | &constant] [&export]

here “dvar” stands for analog variables (double precision) and “ivar” for digital variables (long long integer)
.

Short forms to ask for update, export or to declare “dvar” or “ivar” as a constant may be added. See
shortforms chapters for more details.

Please note that there is a special syntax reserved on variables when there are part of the instruction
“command_line”. See this instruction for this special case.

These instructions declare and initialize variables at the same time. They are sorted. The initial value can be
any C expression and can involve previously declared user's variables. Self-reference is not allowed. Initial
value is not mandatory: default values are ANALOG_INI or DIGITAL_INI, depending on the type of the
variable. Initial value may be overwritten by instruction “input“.

Each variable must be declared once and ONLY once. The NAPA compiler sorts variables although it is not
generally recommended to scramble the definitions (to maintain human readability).

A variable and a node cannot share the same name.

Variable values can be introduced at run-time from a file or “stdin” using instruction “input”. In this case, if
the user already initialized the variable in a variable definition, a warning is produced.

In some situations, a declaration of a variable is necessary but no definition is needed. In this case, use the
special syntax:

...
dvar myvar (void)
ivar yourparm (void)
...

Variable declarations may be completed by variable updates if the variables must vary during simulation.

Although variables are defined before nodes in the generated C code, it is nevertheless allowed to define
variables using nodes' values. For initialization, ANALOG_INI or DIGITAL_INI will replace the nodes'
values. See also paragraphs concerning “update” and “input” above.

 NAPA differently handles user's variables and nodes:

VARIABLES ARE SORTED SEGMENT BY SEGMENT.
VARIABLES ARE UPDATED BEFORE NODES IN A SIMULATION LOOP.

Compare variables to nodes, and see also appendix A, page 149, for more information.

LOCATION DEPENDENT INSTRUCTION

The NAPA compiler sorts the variables. They are therefore not declared and initialized in the order they
appear in the netlist. Thus a variable can refer to a variable not yet declared. Of course, no loop of
definitions is allowed. Variables using local sampling frequency must be placed at the correct position
versus decimation or interpolation control.

51

 CAUTION:

A COMMON MISTAKE is to believe that a variable is updated by default. Use instruction “update”!

error

This instruction issues an error and stops the parsing of the netlist. It prevents the simulation of the netlist
and writes a message on the “stderr” output.

 error “<some_message>”

event

This is a special kind of integer variable (see "ivar"). This variable is automatically updated (see "update")
at the local sampling rate. This is the only variable authorized in a condition applied to an "update", an
"output" or a "dump". The definition of an event is expected to return an integer value (non-zero value being
considered as TRUE). The NAPA compiler sorts the events, like the other variables.

The modifier (new), placed in front of the C expression, makes the event to watch for a change in this
expression. No change is returning the value FALSE, a change is returning the value TRUE. It is important
to note that the C expression itself may return an integer or a real value but that the event is returning an
integer value.

CAUTION: It is important to note that the events are updated in the loop before the nodes. Therefore they
cannot react on a node change before the next loop.

event <event_var_name> <C_expression_returning_an_integer>
event <event_var_name> (new) <C_expression_returning_a_number>

...
event ev0 ampldb == -3.0
event ev1 (new) ampldb
event ev2 (LOOP_INDEX % 100LL) == 0LL
...
output "stdout" a b c d when ev0
update ampl when ev1 && ev2
update freq when ev2
...

LOCATION DEPENDENT INSTRUCTION

export

Additional node(s) or variable(s) can be transferred to user-defined tools by specifying

export [<var_nam>, <nod_nam>,
 LOOP_INDEX, ABS_LOOP_INDEX, REL_LOOP_INDEX,
 TIME, ABS_TIME, REF_TIME, REL_TIME, WALL_CLOCK, …]

52

Exported nodes or variables must be digital or analog type; string type variable cannot be exported.

User's functions or tools can be prepared to consider these additional nodes or variables, thanks to internal
macro EXPORT. Please note that some tools will only use the first exported variable and ignore the other
ones.

Please consult header files for information concerning a specific user's function or tool.

...
dvar myvar1 log(TIME)
ivar myvar2 2

...
update myvar1
...
#* 3 variables are exported here: myvar1, myvar2 and WALL_CLOCK

...
export myvar1 WALL_CLOCK
...
export myvar2
...

An example: the SMART TOOL. Although this variable does not belong to the explicit list of inputs of the
tool, “tsnr” will include the current value of variable “freq” inside the output file “/jdoe/simu/mytsnr.out” as
part of the simulation results.

File "/simu/mytsnr.nap"

...
dvar sig_freq 1000.0
export sig_freq
...
node ctr itool tsnr “/jdoe/simu/mytsnr.out” s3 1.0 1.0e3 16384
...
update sig_freq (TOOL_INDEX + 1)*1000.0
...

The user-defined tool “tsnr” has been defined to add in its output file an extra column relative to the export
identifier if any.

File "/simu/mytsnr.out"

MYTSNR
(tool) tsnr - frequency domain analysis
(compiler version) NAPA V3.00
(source file) mytsnr.nap
(random seed) 474285303
(normalization) s3 / 1
(bandwidth) 1.000 Hz .. 1.000 kHz
(samples) 16384
(sampling frequency) 1.000 MHz
(frequency resolution) 61.035 Hz
(window) 4 Sample Blackman Harris

Sat Jan 22 20:50:07 2000 by YLEDUC
packet freq sig_RMS noise tsnr sig_freq
 0 9.765625e+002 -7.446675e+001 -7.053087e+001 -3.935882e+000 1.000000e+003
 1 9.765625e+002 -6.731440e+001 -6.917046e+001 1.856052e+000 2.000000e+003
 2 9.765625e+002 -6.512889e+001 -7.023648e+001 5.107589e+000 3.000000e+003
 3 9.765625e+002 -6.394195e+001 -7.122892e+001 7.286974e+000 4.000000e+003

53

...
end of output file

The user-defined tool “tsnr” has been defined to add in its output file an extra column relative to the export

It is also possible to export a variable by adding '&export' to the definition of the variable:

File "/mysimu.nap"

...
dvar myvar1 log(TIME) &export &update
ivar myvar2 2 &export

...

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

format

This instruction defines the output format for nodes, variables and strings in the file produced by the
instruction “output”. These formats may be used in user’s functions.

format (analog) <“C_double_output_format”> | S | M | L
format (digital) <“C_long_long_output_format”> | S | M | L
format (hex) <“C_long_long_output_format”> | S | M | L
format (string) <“C_string_output_format”> | S | M | L

These instructions follow the C syntax. The default output format for analog type is “ % .12e”, a format
compatible with double float numbers. For digital type it is “ %11lld”, a format compatible with long long
integer and “ %12s” for string. Predefined format ‘S’, ‘M’ and ‘L’ are available, the format ‘M’
corresponds to the default value, ‘S’ and ‘L’ resp. to smaller and larger formats, at the exception of hextype
where the largest value is the default.

Predefined Formats S M L

Analog type: " % .9e" " % .12e" " % .15e"

Digital type: " % 6lld" " % 11lld" " % 21lld"

Hex type: " %#06llX" " %#010llX" " %#018llX"

String type: " %6s" " %12s" " %24s"

format (digital) “ <%5llx> ”
format (analog) “ %5.2f”
format (string) “ %5s”

format (analog) L
format (hex) S

Be careful that NAPA is not verifying the syntax or the coherence of these output formats. This is a classical
and hazardous error in C programming. NAPA is unable to help you for this particular point. Prefer the
predefined ‘S’, ‘M’ or ‘L’!

54

 NOTE:
There is no provision to detail the output format of a particular node or variable.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

fs

The sampling frequency is specified by (optional)

fs [<sampling_frequency>]

The sampling frequency must be a positive double precision CONSTANT number. This is the main sampling
frequency of the simulation. See also instruction "ts".

fs 1.0e6

Default value is 1.0.

fs

One and only one instruction “fs” should be instantiated in a netlist.

 CAUTION:
Sine wave generators and similar node kinds are using the sampling frequency to compute the signal. A
common mistake is to forget to define “fs”. In this situation, NAPA uses the default value, the simulator
risks to process sine or cosine of huge numbers, losing accuracy or simply bumping.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

ganging

It is used to gang parameters to transfer by address to a user function (identical to “array (pointer)”):

ganging <nam> ‘[‘<size>’]’ <nod_nam | var_nam | string | num | arr_nam...>
ganging <nam> ‘[]’ <nod_nam | var_nam | string | num | arr_nam...>

The array of pointers allows to gang parameters to transfer them by address to a function, a user defined
function or a tool. The parameters are ganged in their specified position (‘ganging by position’) but this
instruction supports the transfer of parameters by name if the operator ‘::’ is used (‘ganging by name’).

ganging <nam> ‘[‘<size>’]’ <id1::id2...>
ganging <nam> ‘[]’ <id1::id2...>

The parameter ‘id2’ is transferred by address by it is tagged by an identifier ‘id1’. A user function receiving
such an array may be written in such a way that it reorders the list of ganged parameters according from a
template.

55

The declaration of the size is optional. It corresponds to the exact number of items. Ganging of different
types of nodes, variables and other arrays of pointers are allowed.

...
dvar c1 1.1
dvar r2 2.2
dvar freq 1.2345e3

string nam “rc”
string tag “typic”

dvar wt _2PI_ * freq * TIME
update wt
...
ganging Coef[3] nam c1 r2
ganging Num[2] n1 n2
ganging Den[5] d1..5

ganging Equ[6] wt tag 1.23 Num Den
ganging All[] Equ tag c1
...
node s1 sum a b
node out duser myfun in Coef All 54321.0
...

Parameters ganged in an array of pointers may referenced by an id. An example is shown below, where
the duser function ‘myfun’ is built to reorder the parameter transferred by the ganged parameters ‘parm’
ordered according to an internal template ‘Circuit, A, Offs, Cin, Rload’ and not by their positions: This
operation has to be done internally in the function.

...
dvar c1 1.1
dvar r2 2.2
dvar gain 1.0e3
string nam
...
node in osc 0.0 1.0 1234.5 0.0
...
ganging rc[] Cin::c1 Rload::r2
ganging op[] A::gain Offs::0.0
ganging parm[] rc op Circuit::nam

node out duser myfun in parm in
...

Parameters ganged in an array of pointers may referenced by their numbers. An example is shown below:

...
ganging Num[2] a b
ganging Den[5] d1..4
ganging Equ[4] Num Den
ganging prm[5] 1.2345 ampl frq “input signal” TRUE
...
node s1 sum b d5 Num.2 // second parameter of array Num, i.e. b
output “stdout” Equ.5 a // fifth parameter of array Equ, i.e. d3

56

...

LOCATION INDEPENDENT INSTRUCTION

gateway

The “gateway” statement is used to control the exit point of the simulation corresponding to “assert”
statement(s). The format is

gateway [<count_down_number>]

Only one “gateway” is allowed in a simulation. This instruction allows the simulation to continue after an
exit request until the segment containing the gateway is completely executed. The “gateway” statement can
initiate a count down to force the execution of the segment several times before exiting. This instruction is
inactivated as soon as “assert” is inactivated.

gateway

gateway 12

LOCATION DEPENDENT INSTRUCTION

header

Header files are C code that is to be included in the output program to be compiled with the C code
generated by NAPA. Headers file are not precompiled to take advantage of C preprocessor directives that
could be contained in user's profile header files or NAPA instruction “directive”.

To include a header file:

header <“file_pathname”> [(noexpand)]
header <“file_pathname”> (expand)

The FIRST header file that MUST be included is “Napa.hdr”. This header contains information needed to
generate correct C code. This header file defines also a few useful functions to get you started. A copy of
“Napa.hdr” is currently located in the library of generic headers. The users can customize this file or a copy
of this file: any header name starting by the letters <NAPA> with a suffix <.hdr> is acceptable.

Optional qualifier keywords (expand) and (noexpand) control the header expansion into generated C code.
The header files are respectively copied or included (as C preprocessor directive “#include”) in the output C
program depending on the qualifier (expand) or (noexpand). Default and recommended value is (noexpand).
Qualifier (expand) cannot generally be used for headers containing themselves calls to other header files, as
they could not be correctly recognized (conflict between the C pathname and the NAPA pathname). It has
therefore a limited interest.

A directory is dedicated to store a library of reusable headers. The pathname of this library is indicated to
NAPA through the command line. Using angle brackets “<…>“ is a short form to include header files
belonging to this directory. If “/NAPAlib/hdr” is the pathname of this directory, following instructions are
perfectly equivalent:

header <Napa.hdr>

header “/NAPAlib/hdr/Napa.hdr”

57

Headers are processed in the order they are specified in the NAPA netlist. (Take care to mention proper
pathname!). A call of a header already processed is always ignored if spelling is identical.

A user's profile header can be added to control the C compilation and to profile user-defined functions (see
“user.hdr” header as example). If used, such header must be placed just after the header “Napa.hdr”. This
header is optional. It contains typically C preprocessor directives (“#define”) controlling the compilation of
the generated C code. This is not the preferred way to introduce a user’s profile: see instruction “directive”.
Several users' profile headers can be used if it is more convenient. Please follow the NAPA
recommendation: use “.hdr” suffix for NAPA header files (see appendix C page 161).

A typical NAPA netlist could contain lines like
...
header <Napa.hdr>
header “/home/NAPA/hdr/tool/fft1.hdr”
...

Same header could be called several times in the netlist without causing multiple inclusions in the C file.

 TIPS:
It is always a good idea to place the corresponding header instruction in the cell calling a user’s function or
tool. This guarantees that the necessary header file is effectively called.

LOCATION INDEPENDENT INSTRUCTION

BUT headers are processed in the order they appear in the netlist. Header “Napa.hdr” must be the first
header of the netlist.

init

You can call a C function to initialize something in the same way that you initialize a variable, using
instruction “init”. This statement is also the preferred way to initialize nodes.

init void <C_function>
init <node_name> <C_expression>

These are executed only in the initialization section. Nodes can be initialized with “init” but must be defined
by a specific “node” instruction. It is not allowed to initialize variables using this instruction.

For example:

header <Napa.hdr> // generic header file
header “array.hdr”
...
init s4 3.0 // node initialization
init void zero_arrays(0.0) // execution of function
...

Function “zero_arrays()” being defined in a user's header file “array.hdr”:

58

File "array.hdr"

#ifndef __ARRAY_HDR__
#define __ARRAY_HDR__

/* ** GLOBAL VARIABLES *************************************** */

double array[100];

/* ** FUNCTION PROTOTYPES ************************************ */

void zero_arrays(double);

/* ** FUNCTION DEFINITIONS *********************************** */

void zero_arrays(double valinit) {
 int i;
 for (i=0, i < 100, i++) {
 array[i] = valinit;
 }
 return;
}

/* *** */

#endif /* __ARRAY_HDR__ */

If necessary, nodes are automatically initialized to “ANALOG_INI” or “DIGITAL_INI” depending on their
types. Nevertheless, you should consider initializing the output of “delay” node, “integrator”, “toggle”,
“latch”, “hold”, “track”, “register” and “muller” nodes, as they contain or could contain memory elements.
This is reflecting the reset that an experienced designer will place in its module. “delay” nodes contain also
memory elements that may be initialized by the user.

Other nodes cannot be initialized, as the simulator will immediately overwrite their values. In this case, a
warning is issued as the initialization of such a node has no effect.

To verify or validate a circuit, initialization of these nodes could be especially important. Although it is not
guaranteeing a complete coverage, it is a good idea to initialized randomly nodes which will not be reset in
the physical implementation.

Here is an example where the initialization of a node is mandatory: the computation of the minimum value
taken by node during a simulation.

“amin” is taking the ‘historical’ minimum value of node “a”

node oldmin delay amin // “oldmin” is the previous minimum
node amin min a oldmin // minimum of “a” and “oldmin”
init oldmin 9.9e99 // initialization to a huge value

LOCATION DEPENDENT INSTRUCTION

Initialization can include segment dependent values. Initializations and variables are processed in the order
they appear in the netlist.

59

inject

It is possible to inject a signal on an ANALOG node without reworking the netlist.

inject <node_name> <C_expression>

Any analog node is candidate for noise injection, including “dc” or “const” nodes if they are analog type.
The C expression describes the noise to be injected. The noise is added to the signal at a rate equal to the
local sampling frequency of the signal receiving the noise, independently on the location of the “inject”
instruction in the netlist. Be careful that signal injected on a node will not be exported by any “export”
instruction.

node c sum a b
node d gain 2.0 c

node c sum a b
...
inject c rand_normal(0.0, 0.001) // noise injection
...
node d gain 2.0 c // noisy signal

input

The executable produced from the NAPA netlist can be prepared to accept data from a data file. Several
inputs can be used inside a same netlist. Only digital or analog variables can be input. It is not allowed to
input nodes or string variables. Variables must be declared using the instructions “dvar” or “ivar”. The
variable declaration determines the type of the variable (analog or digital). The simulator, in a way similar
to variable updates, processes the inputs but the input does not depend on the “decimate”, “interpolate” or
“drop” instructions. “ivar” may be input as regular decimal numbers, octal with prefix 0 or hexadecimal
with prefix 0X.

This is not the preferred way to input data. Prefer dedicated user defined functions, as they are more
powerful and programmable than this instruction “input”.

60

sum gain

a

b
c d

It is important to note that the simulation will stop if the end of the input file is reached. During the
simulation, a line of values at a time is read at each loop.

input “stdin” <var_name...>
input <myvar> <var_name...>

Here is an example of input:

...
dvar value1
dvar value2
ivar value3
ivar value4

string filin “somefile.dat”

input “myfile.dat” value1 value2 value3
input filin value4

node s1 dalgebra value1*10e-6
...

The corresponding input file being for example, where the 3 columns correspond to the value of the 3
variables ‘value1’, ‘value2’ and ‘value3’, comments are possible but blank lines are not allowed:

this is a first comment
 1.0e-6 1.230 5
 2.0e-6 1.240 4 // modified by JDoe
 3.0e-6 1.250 6
and another comment
 4.0e-6 1.270 5
 5.0e-6 1.280 2

LOCATION INDEPENDENT INSTRUCTION

This instruction is NOT segment dependent.

cell_interface, data_interface

cell_interface < $node | $variable | $parameter...>
data_interface < $variable | $parameter...>

These instructions are particular to a cell or a data cell. These keywords must be the FIRST instruction of the
netlist and should be placed on the very first line of the file. See the node “cell” and the instruction “data”
for details.

interlude

You can include an interlude between the successive executions of a tool (optional):

61

interlude <range>
interlude <min> <max>
interlude <min> <max> <res>

The range (long) and the min and max numbers must be non-negative CONSTANT numbers (long). Default
value is 0. The res number is the resolution of the values produced by the ntruction.

The execution of the tools are separated by 1000 clock cycles:

interlude 1000

The execution of the tools are separated a random number between 1000 and 1020 clock cycles:

interlude 1000 1020

The execution of the tools are separated a random number multiple of 5 between 1000 and 1020 clock
cycles:

interlude 1000 1020 5

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

interpolate

Keyword “interpolate” introduces a new segment in the netlist. Nodes and variables are processed by
segment (see chapter describing the concept of NAPA). Interpolation can be specified simply by putting a
line with the keyword “interpolate” followed by the interpolation factor, i.e.

interpolate [fs] <interpolation_factor>

Interpolation factor must be a strictly positive integer CONSTANT. No variable is allowed.

NAPA is able to compute automatically the local sampling frequency determined by the interpolate factor.
Anything that follows the “interpolate” line will be evaluated at the interpolated rate. See also appendix A,
for more information. Interpolation factor is relative to the previous segment rate, excepted if the keyword
‘fs’ is added , in this case it refers to the absolute sampling frequency defined by instruction ‘fs’.

For example, interpolation by 8:

segment running at sampling frequency fs
...
interpolate 8
...
segment running at sampling frequency 8*fs

Another example:

fs 3.0e6
...

62

segment running at sampling frequency 3MHz
...
decimate 3
...
segment running at sampling frequency 1MHz
...
interpolate fs 5
...
segment running at sampling frequency 15MHz

LOCATION DEPENDENT INSTRUCTION

This instruction modifies deeply the behavior of the simulation. Be careful to place this instruction at the
appropriate location in the netlist.

ivar

see paragraph: dvar, ivar.

load

This instruction should be used only for debug purpose. We will not describe the syntax as it usually takes
the output of a “dump” instruction as input (ANSI C code).

The “load” statement is loading the file corresponding to a “dump” from a previous simulation. Values
contained in a “load” are overriding the default initial values of NAPA at initialization and after each
“restart”. Format is identical to the format of file produced by “dump”. Only one “load” is authorized inside
a NAPA netlist.

Restarting a complete simulation thanks to “load” and “dump” is possible. Nevertheless, take care that
“dump” and “load” are not dumping or neither loading internal states of user-defined functions or tools nor
the internal states of the pseudo-random generator.

load <“file_name”>

load “foo.dmp”

LOCATION INDEPENDENT INSTRUCTION

The usage of “load” is directly linked to the instruction “dump” and should be limited to very specific
situations.

This instruction can be located anywhere in the netlist.

NAPA_version

NAPA_version <version_id>

63

This is intended to be a compatibility check. NAPA compiler will verify if the declared version in the file is
not older than the version of the compiler itself.

With current version, this instruction should be

...
NAPA_version V4.00
...

node

node <nod_nam> <kind> [<parm_if_any...>] [<nod_if_any...>]
node void <kind> [<parm_if_any...>] [<nod_if_any...>]
node (<nod_nam>) <kind> [<parm_if_any...>] [<nod_if_any...>]

A NAPA node is always the output of a single object. Node and object cannot be dissociated. The NAPA
node is the primitive element of the NAPA netlist. See chapter presenting the NAPA concept, for more
information.

Each node must be defined once and ONLY once. Self-reference is not allowed.

Unused nodes cause a warning. To prevent the warning, use the specific identifier “void” as a dummy
signal. This identifier “void” can be used many times; there is no risk to create unwanted connections.
Another way to avoid such a warning is to place the output node between parenthesis the compiler will not
check the use of the node.

Undetermined nodes cause an error. Undefined inputs or internal loop containing no delay element can
cause undetermination. As undetermination propagates in the netlist, undetermined nodes can cause the
undetermination of many other nodes.

A node and a variable cannot share the same name. A reserved keyword cannot be used as node name.

The nodes are initialized by default to “ANALOG_INI” or “DIGITAL_INI” (values predefined resp. as 0.0
and 0). Nodes can be also initialized thanks to instruction “init”. In this case, their initialization may depend
on variable definitions and their respective positions in the netlist.

Instructions “decimate”, “interpolate” and “drop” are dividing the NAPA netlist in separate segments.
Segments are sorted separately. Nodes of a segment are not mixed with the nodes of another segment.

NAPA sorts nodes in such a way that the data flow is respected. NAPA introduces no implicit delay.

 NAPA differently handles nodes and user's variables:

NODES ‘node’ AND VARIABLES ‘dvar’, ‘ivar’ ARE SORTED SEPARATELY BY NAPA; VARIABLES ‘string’
ARE NOT SORTED.
NODES ARE UPDATED AFTER VARIABLES IN THE SIMULATION LOOP.

Compare variables to nodes, and see also appendix A,for more information.

LOCATION DEPENDENT INSTRUCTION

64

nominal

Keyword “nominal” introduces a new segment in the netlist. Nodes and variables are processed by segment
(see chapter describing the concept of NAPA). Please note that the keyword ‘fs’ is mandatory.

nominal fs

Following segment will run at the global sampling frequency specified by the instruction “fs”.

fs 8.0e6
...
segment running at sampling frequency 8.0MHz
...
decimate 4
...
segment running at sampling frequency 2.0MHz
...
nominal fs
...
segment running at sampling frequency 8.0MHz

LOCATION DEPENDENT INSTRUCTION

This instruction modifies deeply the behavior of the simulation. Be careful to place this instruction at the
appropriate location in the netlist.

num_initial

 DEPRECATED, use ‘interlude’ instruction.

opcode

Opcode is used to describe the ALUs (see node “alu”).

opcode <alu_name> <opcode_number> [<function_template>]

Several “opcode” are needed to describe a single ALU. Each line contains an opcode number and its
corresponding function. Template uses dummy operands (slots #1, #2, ...).

The number of dummy operands must correspond to the number of input of the “alu” node. An empty
template corresponds to a no operation (hold).

opcode myalu 0 // hold output, no operation
opcode myalu 1 #1 // register 1 to output
opcode myalu 2 #2
opcode myalu 3 #1 + #2 // sum of register 1 and 2
opcode myalu 4 #1 - #2
opcode myalu 5 - #1
opcode myalu 6 shiftr(#1)
opcode myalu 7 shiftl(#1)

In the example above, it is supposed that “shiftr ()” and “shiftl ()” have been defined as ANSI-C functions in
some header called in the netlist.

65

LOCATION INDEPENDENT INSTRUCTION

This instruction can be located anywhere in the netlist.

output

Output to file or standard output can be specified by the keyword “output” followed by the file name, a
variable of type ‘string’ or a stream name between double quotes, followed by the names of the nodes or
variables to be output. Several output instructions can coexist inside the same NAPA netlist if they are
outputting into different streams or files. At run-time, the potential collisions between I/O streams are
checked by the simulator thanks to a dedicated C function registering the I/O's.

This instruction may be conditioned by an event using the keyword "when" followed by an event variable.

It is VERY important to understand that that the output rate is computed from the sampling frequencies of
each elements and NOT from the location of this instruction in such a way that this instruction is not
introducing any hidden subsampling..

output <“fil_nam”> <nod_name | var_name...>
output <mystring> <nod_name | var_name...>
output “stdout“ <nod_name | var_name...>
output “stderr“ <nod_name | var_name...>

output <“fil_nam”> <nod_name | var_name...> when <event_condition>
output <mystring> <nod_name | var_name...> when <event_condition>
output “stdout” <nod_name | var_name...> when <event_condition>
output “stderr“ <nod_name | var_name...> when <event_condition>

<event_condition> is a Boolean combination of events defined by instruction "event".

Real type output may be scaled individually by a suffix:

(y) yocto, 10-24

(z) zepto, 10-21

(a) atto, 10-18

(f) femto, 10-15

(p) pico, 10-12

(n) nano, 10-09

(u) micro, 10-06

(m) milli, 10-03

(k) kilo, 10+03

(M) mega, 10+06

(G) giga, 10+09

(T) tera, 10+12

(P) peta, 10+15

(E) exa, 10+18

66

(Z) zeta, 10+21

(Y) yotta, 10+24

(_) per cent, 100.0

Integer type output may be configured individually by a suffix:

(x) or (X) hexadecimal representation

NB: the binary prefixes3 (kibi, mebi, gibi, tebi, pebi, exbi, zebi and yobi) are currently not supported.

It is possible to add units after the scaling prefix at the condition to separate prefix and unit by a ‘_’.

 For example, the following netlist will produce the output of the global variable “LOOP_INDEX” on the
standard output and another output in the file “/home/jdoe/NAPA/project1/mysim.out”.

..
string filout “somefile.dat”
string filerr “stderr”

dvar ampl1 1000.0
dvar ampl2 1.0
dvar ampl3 1.0e-6

node a1 sine 0.0 ampl1 1000.0 0.0
node a2 cosine 1.0 ampl2 1234.0 0.0
node a3 triangle 0.0 ampl3 4321.0 0.0
node d2 comp a1 0.0

output “stdout” LOOP_INDEX
output filout a1(k_Volt) a2 a3(u)
output filerr d2
output “/home/jdoe/NAPA/project1/mysim.out” LOOP_INDEX ampl a1..3 d2

terminate LOOP_INDEX > 1000LL

Another example with output conditioned by an event:

...
event ev1 LOOP_INDEX > 100LL
event ev2 (new) (LOOP_INDEX > 200LL)

dvar ampl 1.0

node a1 sine 0.0 ampl 1000.0 0.0
node a2 cosine 0.0 ampl 1234.0 0.0
node d2 comp a1 0.0

output “stdout” LOOP_INDEX a1..2 d2 when ev1
output “once.out” LOOP_INDEX a1..2 d2 when ev2

3 Préfixes de la norme CEI 60027-2 (2000-11)

67

terminate LOOP_INDEX > 1000LL

Output formats may be changed thanks to instruction “format”.

Output files begin with a banner of fifteen lines. This banner contains the necessary information to
document the data produced by the simulation. Output data format is compatible with graphics packages
like Gnuplot4. The output banner can be removed partially or totally by defining directive “NO_BANNER”
or “STRICTLY_NO_BANNER”. Of course, directive “STRICTLY_NO_BANNER” implies directive
“NO_BANNER”. Another directive “NO_TIME_OUTPUT” suppresses the first column of the output.

directive NO_BANNER

directive STRICTLY_NO_BANNER

directive NO_TIME_OUTPUT

The banner of fifteen lines was chosen as a standard for all user-defined functions or tools outputting to file.
These directives may condition the existence of the banner for these functions. However this is under the
responsibility of the writer of these user's functions.

Please note that keyword instruction “interlude” has no effect to data produced by “output”.

 NOTE:

This instruction synchronizes automatically with the nodes “itool” and “dtool” nodes. When such tools are
instantiated in the netlist, this instruction refers no more to the absolute time of the simulation but to a time
relative to the beginning of each packet of data, i.e. to the times when the macro “TOOL_INDEX” changes.

 CAUTION:
RAM or ROM content cannot be output.

LOCATION INDEPENDENT INSTRUCTION !

ping

This instruction ‘pings’ the functions which are used in the NAPA netlist. If a function has the appropriate
code, the simulator will display the file where this function has been declared. Valid for C functions or
macros, user functions and tools defined in header files.

Ping output file can be specified by a file name, a variable of type ‘string’ or a stream name between double
quotes. Default is “stderr”.

ping <“file_name”>
ping <myvar>
ping [“stderr“]

It is expected, but it is not mandatory, that a user defined function is accompanied by 2 lines which will
trigger a response to the ping command:

4 Gnuplot is a multi-platform graphics package available as freeware.

68

 …
#define myfunction_IS_REGISTERED
PING(myfunction);

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

post

This instruction allows to postprocess the resulting file of a time domain output (instruction ‘output’) or of
a user’s defined tool (node ‘itool’ or ‘dtool’). Please note that standard IO stream ‘stdout’ and ‘stderr’ cannot
be postprocessed. This instruction must follow directly the tool or the output to be postprocessed. See user-
defined functions

post <“function_id”> <file_name>  < parameters...> 
post <label> <“function_id”> <file_name>  < parameters...> 
post <label> “void” <file_name>

Without label or with labels all different, the postprocessing refers to the previous output or tool analysis. A
sequence of postprocesses with the same label cascades the postprocessing. A label is a strictly positive
integer.

See the note below concerning the usage of identifier “void” with 'post'.

For example, the output of the TSNR analysis will be postprocessed by a function ‘histo’. Histogram and
statistics of the TSNR will be computed and results stored in files “tsnr2.out“ and “tsnr3.out”.

...
node a noise 0.0 1.0
node void itool tsnr “tsnr1.out” a 1.0 100000

post histo “tsnr2.out” 4 // process “tsnr1.out”
post stat “tsnr3.out” 4 // process “tsnr1.out”
...
terminate TOOL_INDEX > 100

Another example, where output is postprocessed and postprocessings cascaded (please note the labels):

...
node a noise 0.0 0.1
node b dalgebra a*a

output “file1.out” a b

post 1 select “file2.out” 1 0.0 0.3 // process “file1.out”
post 1 stat “file3.out” 2 // process “file2.out”
post 2 histo “file4.out” 2 // process “file1.out”

terminate TIME > 1.0

Use the identifier “void” to change the file where the postprocessor is pointing:

69

...
node a noise 0.0 0.1
node b dalgebra a*a

output “file1.out” a b

post 1 select “file2.out” 1 0.0 0.3 // process “file1.out”
post 1 stat “file3.out” 2 // process “file2.out”
post 2 void “file2.out” // refer to “file2.out”
post 2 histo “file4.out” 2 // process “file2.out”

terminate TIME > 1.0

There is another way to use the instruction ‘postprocess’ using the instruction ‘void’:

...
void “file1.out” // to indicate a file
post select “file2.out” 1 0.0 0.3 // process “file1.out”
post stat “file3.out” 2 // process “file2.out”
...

This method is useful to postprocess a file created by another NAPA run.‘post’ accepts optional qualifiers.
See (option) in chapter Instruction Qualifiers.

It is also interesting to note that files processed by a postprocess are often discarded. Therefore a unique file
ID is recommended. Use instruction ‘string’ without definition to create these files.

LOCATION DEPENDENT INSTRUCTION

random_seed

random_seed <[- | +] long_int_num>

By default, the internal random generator uses a seed made at the NAPA compilation time. This seed is
written in the C code and can be reused in further simulations. To reuse a seed, use the instruction
“random_seed <num>” where <num> is the seed to introduce. New simulations will be exactly identical to
the previous one.

Using the negate value of the random seed number will produce a stream of antithetic pseudo-random
numbers.

In some special situations, you will need to produce a seed at the simulation time (when you give the
executable to a third party for instance), use then “ random_seed 0 ”. If a “command_line” instruction is
instantiated, this is done by default.

random_seed 123456

 CAUTION:
If you write your own pseudo-random numbers generator, your code should check the value of the macro
“ANTITHETIC”. It is set to ‘TRUE’ when antithetic stream is asked, ‘FALSE’ otherwise. Write your code
accordingly.

LOCATION INDEPENDENT INSTRUCTION

70

restart

You can ask for a reset of the nodes and user's defined objects:

restart

Call reset functions of all user_defined functions (see “duser”, “iuser” types). Reset the NAPA nodes.
Initialization as called by “load” instruction (but not “input”) is called by “restart”.

 CAUTION:
NAPA variables and tools “itool” and “dtool” are NOT reset. Restart is generally not a safe task and should
be reserved to very specific situations.

LOCATION DEPENDENT INSTRUCTION

string

string <str_name> [<“value” >]

Where “string” stands for string of characters, i.e a set of characters terminated by character ‘\0’.

Please note that there is a special syntax reserved on strings when there are part of the instruction
“command_line”. See this instruction for this special case.

This instruction declares and initializes strings at the same time. The value of a “string” accepts ONLY
string constant or indirection). Self-reference is not allowed. The value is not mandatory: default value is the
empty string “”. The NAPA compiler does NOT sort strings! Strings cannot be updated.

Indirection is possible: “string” may be defined by a string containing one or several identifiers of
previously defined variables (“ivar”, “dvar” or “string” or sampling frequency “fs”and period “ts” and
“directive”) preceding by the letter ‘#’. Indirection will be resolved during the compilation of the netlist and
will not be reevaluated by the simulator during run-time. The processing of the indirection using “ivar” or
“dvar” will be limited to copy the value of the variable, no mathematical evaluation will be performed:

...
string unit “Hz”
dvar fstart 1000.0
dvar fstop 10.0*fstart
string str1 “start frequency is #fstart #unit”
string str2 “stop frequency is #fstop #unit”
...

In the example above, the string variables “str1” and “str2” will contain respectively:

“start frequency is 1000.0 Hz”
“stop frequency is 10.0*fstart Hz”

>>> A special “string” constant ‘Space’ will not appear in the time output header of id. This is practical to
improve the readability of a time output file (instruction “output”). It is therefore possible to introduce
commas between columns for example.

>>> An empty definition creates a unique ID, used for instance, in the creation of a unique filename as in
the example below.

71

..
string aname
tool fft aname sigout 1.0 8.0e3 65536
post sort stdout 4 (down)
...

In the example above, a unique filename will be created by the tool ‘tsnr’.
For instance, ‘YL2431498947_0.out’, as a tool adds automatically the suffix ‘.out’ to file name if needed.
Here this file is discarded after the execution of the postprocessing ‘sort’.

LOCATION DEPENDENT INSTRUCTION

stuck

For fault modeling, it could be necessary to reproduce a fault. It is possible to stuck a node to a value. C
expression will overwrite the node definition. Initialization is not affected.

This special instruction must be placed in the MAIN netlist file only. It should be used only in fault
modeling and should not be used for other purposes.

stuck <node_name> <C_expression_returning_a_number>

LOCATION DEPENDENT INSTRUCTION

 CAUTION:
C expression is automatically cast to the original type of the node (digital or analog). This expression could
contain nodes or variables. In this case, NAPA will reorganize the C code to handle these new inputs, the
resulting netlist must be a valid NAPA netlist (loop without delay will cause undetermination).

synchronize

If you are using multiple tools inside a same simulation, synchronizable tools are by default synchronized.
Synchronization can be enabled (default) or disabled.

synchronize [(yes)]
synchronize (no)

NAPA builds automatically a synchronization mechanism. This mechanism is based on a mailbox and hand
shaking. NAPA and tools are exchanging synchronization messages. The instruction “synchronize (no)”
disables the synchronization mechanism. This is not generally recommended.

LOCATION INDEPENDENT INSTRUCTION

This instruction is a declaration which can be located anywhere in the netlist.

72

terminate

You should ask to stop simulation somewhere:

terminate  <C_Boolean_expression> 

NAPA simulation stops at the end of the corresponding loop. Only one “terminate” instruction may appear
in a netlist. The Boolean C expression determines the termination of the simulation (value ‘TRUE’). This
instruction can be placed anywhere in the netlist.

Typical termination condition uses macro “LOOP_INDEX” or “TIME”. The macro “LOOP_INDEX”
counts the number of loops the simulator has already performed. Another possible termination condition
uses the macro “TOOL_INDEX”. This macro counts the number of set of tasks the analysis tools have
done. DO NOT USE HERE relative values “REL_LOOP_INDEX” nor “REL_TIME” as they are resetted
periodically to zero!

...
terminate TIME >= 0.001

...
terminate LOOP_INDEX >= 1000000LL

...
terminate TOOL_INDEX >= 1

 CAUTION:
Double check the termination condition as NAPA will not introduce another simulation termination for you.
Default value for the condition is “TRUE”. In this case, the simulator does not need to process any loop.
The code corresponding to the main loop is therefore not built.

LOCATION INDEPENDENT INSTRUCTION

The evaluation of the terminate expression does not depend on the segment where this instruction is located.
It is evaluated at each cycle of the main loop.

title

The title of the simulation is specified by (optional)

title <“some one-line text between double quotes”>

For instance:

title “Hello world!”

User's defined functions or tools to document simulation output can use the title through macros "TITLE"
and "SHORT_TITLE". Output driven by instruction “output” is using the title as automatic documentation
of the output file. Multiple “title” strings are concatenated in a single string. Default title is empty string if a
string does not follow statement title. Default title is the name of the input file (without extension) if no title
statement is used.

“title” is a special string variable. Indirection is possible (see “string”). It is not necessary to place the “title”
after the definition of the variables concerned by the indirection. It will be processed after that all variables
have been defined and their possible indirections resolved.

73

 TIPS:
Use “title” in a cell to complete the main title if necessary, for example the circuit netlist:

title “TSNR analysis”
...
node out cell dut “/home/jdoe/NAPA/project1/a2d_desc.1” in
node ctr tsnr “stdout” ...
...

tool

This instruction is extended as a node 'itool'

For instance:

tool tf “ stdout” ni 1.0 no 1.0 npts

is expanded and is equivalent to

node void itool tf “ stdout” ni 1.0 no 1.0 npts

Refer to the node kind itool for further explanation.

LOCATION DEPENDENT INSTRUCTION

ts

The sampling period is specified by (optional)

ts [<sampling_period>]

The sampling period must be a positive double precision CONSTANT number. This is the main sampling
period of the simulation. To be used in replacement of ‘fs’. See also instruction "fs".

ts 1.0e-6

Default value is 1.0 but a warning is issued when user is not defining explicitly the sampling period.

ts

 CAUTION:
Sine wave generators and similar node kinds are using the sampling frequency to compute the signal. A
common mistake is to forget to define “ts”. In this situation, NAPA uses the default value, the simulator
risks to process sine or cosine of huge numbers, losing accuracy or simply bumping.

LOCATION INDEPENDENT INSTRUCTION

74

This instruction is a declaration which can be located anywhere in the netlist

update

Variables “ivar”, “dvar” but not “string” can be updated during execution. It may be conditioned by an
event using the keyword "when" followed by an event variable.

The format is

update <var_nam> [<C_expression>]
update <var_nam> [<C_expression>] when <event_condition>

<event_condition> is a Boolean combination of events defined by instruction "event”.

If no expression is given, “update” will reuse the exact expression given during the corresponding variable
definition at each execution of the segment. An error is detected if a variable is updated but not declared
(use “ivar”, “dvar” to declare these variables). It is allowed to update variables using node's value. Variables
are always updated before nodes. It is important to note that ‘updates’ are sorted. Self-reference is allowed
in update expression.

Instructions “decimate”, “interpolate”, “nominal” and “drop” are dividing the NAPA netlist in separate
segments. Segments are sorted separately. Nodes and variables of a segment are not mixed with the nodes
and user's variables of another segment.
In the following example, the variables “n” and “freq” are updated at each simulation loop. As no value is
introduced, update of variable “freq” is using the formula contained in the variable definition:

...

ivar n 0
dvar fstart 1000.0
dvar fstop 10000.0
dvar fstep 10.0
dvar freq fstart + (fstep * (R_TYPE) n)
...
node s0 sine 0.0 1.0 freq 0.0
...
update n n+1
update freq
...
terminate freq > fstop

75

...
event ev (LOOP_INDEX % 1000LL) == 0LL) && (TIME > 1.0e-5)
...
ivar n 0
dvar fstart 1000.0
dvar fstop 10000.0
dvar fstep 10.0
dvar freq fstart + (fstep * (R_TYPE) n)
...
node s0 sine 0.0 1.0 freq 0.0
...
update n n+1 when ev
update freq when ev
...
terminate freq > fstop

In the next example, the same variables are evaluated once over 1000 simulation loops:

...
ivar n 0
dvar fstart 1000.0
dvar fstop 10000.0
dvar fstep 10.0
dvar freq fstart + (fstep * (R_TYPE) n)
...
node s0 sine 0.0 1.0 freq 0.0
...
decimate 1000 // decimation by 1000
...
update n n+1
update freq
...
terminate freq > fstop

It is also possible to update variable by adding '&update' to the definition of the variable, in this cae it is not
possible to change the definition:

File "/mysimu.nap"

...
dvar myvar1 log(TIME) &update
...

See also appendix A for more information about the simulation flow.

 CAUTION:
A common mistake is to believe that a variable update will take the latest update expression by default. The
default value is ALWAYS the variable definition. There is no exception. Another common mistake is to
believe that an “update” placed after a node in a same segment will therefore be processed after the node
during the simulation.

76

LOCATION DEPENDENT INSTRUCTION

void

This instruction is used to precede one or more ‘post’ instructions. It sets the name of the file processed by
the following postprocessors. See the ‘post’ instruction.

void <file_name>

...
void “file1.out”
post stat “file2.out” 4 // analyze file “file1.out”
post select “file3.out” 6 0.0 1.0 // analyze file “file1.out”
...

LOCATION DEPENDENT INSTRUCTION

warning

This instruction publishes a warning during the parsing of the netlist and writes a message on the “stderr”
output.

 warning “<some_message>”

(comment)

A line beginning by “#” is a comment. If you are using the data macroprocessor MAC, use “#*” or “##” to
obtain a comment compatible with both languages. Blank lines are allowed.

any one-lined text

For example:

...
this is a whole line of comment
a comment does not appear inside the generated C code
a comment can contain anything, why not @#$%& ?
...

 NOTES:
Text placed at the right of symbols “//” is ignored by the NAPA compiler. Do not use this right-hand
comment in a MAC preprocessor directive. C like comments (/* ... */) are not supported by NAPA.

77

Instruction Qualifiers

Qualifiers are reserved keywords used to modify the
behavior of some of the NAPA instructions.

after, before

If an “algebra”, “dalgebra”, “ialgebra”, “test”, “itool”, “dtool”, “iuser” or “duser” node depends on another
node being evaluated before it is evaluated itself, but not explicitly in the netlist, the NAPA compiler has no
hint to sort these nodes properly. You can specify “after <node>“ or “before <node>”. This guarantees that
the node is properly sorted. There is an additional limitation for “before”, the node pointed by before must
also be an “algebra”, “dalgebra”, “ialgebra”, “test”, “itool”, “dtool”, “iuser” or “duser” node.

 CAUTION: “after” and “before” should be used sparingly.

The next example is a typical example of bad programming practices:

Say you have a user-defined function that calculates the average and RMS error of all the values in some
store array. A user-defined function can only return one value, so the other value could be stored in a global
variable and then accessed with a “dalgebra” statement. You must however make sure to access it after the
function is called. In a header file “my_stat.hdr”:

#ifndef __MYSTAT_HDR__
#define __MYSTAT_HDR__double rms_error;

/* ** FUNCTION PROTOTYPE ************************************* */

double duser_average_00(int);

/* ** FUNCTION DEFINITION ************************************ */

 double duser_average_00(int id) {
 long long i;
 double x;
 double y = 0.0;
 double y2 = 0.0;
 for (i = 0LL; i < LOOP_INDEX; i++) {

78

 x = store_array[i];
 y += x;
 y2 += x * x;
 }
 y /= (double) LOOP_INDEX;
 y2 /= (double) LOOP_INDEX;
 rms_error = y2 - y*y;
 return y;
}
void init_duser_average_00(int id) { return; }
void check_duser_average_00(int id) { return; }
void reset_duser_average_00(int id) { return; }
void close_duser_average_00(int id) { return; }

/* *** */

#endif /* __MYSTAT_HDR__ */

In the NAPA netlist file:

header <Napa.hdr>
header “my_stat.hdr”
...
node avrg duser average
node rms dalgebra after avrg rms_error
...

Now it is certain that node “rms” will be defined and updated AFTER node “avrg” in the C code produced
by the NAPA compiler.

See also “with” qualifier.

when

Qualifier “when” is used in instructions "output", "update" and "dump" to condition the execution of the
instruction by an event or a Boolean combination of events. See instruction “event”.

with

The keyword “with” may be applied only to nodes. It relocates the node in the segment of the node pointed
by this keyword. This is very practical when the analysis of the simulation is regrouped in a single file. It
guarantees that both nodes are located in the same segment, i.e. running under the same sampling conditions
(same sampling rate and same sampling offset). It could make the simulation netlist more readable or more
modular.

79

These NAPA netlist files are equivalent:

header <Napa.hdr>
header <toolbox.hdr>

fs 1.0e6

...
node a sine 0.0 1.0 1234.5 0.0
node void itool fft “file1.out” a 1.0 1000000 // run @ 1 MHz

interpolate 4

node b cosine 0.0 1.0 5432.1 0.0
node void itool fft “file2.out” b 1.0 1000000 // run @ 4 MHz
...

terminate TOOL_INDEX >= 1

header <Napa.hdr>
header <toolbox.hdr>

fs 1.0e6

...
node a sine 0.0 1.0 1234.5 0.0

interpolate 4

node b cosine 0.0 1.0 5432.1 0.0

...
node void itool fft “file1.out” a 1.0 1000000 with a // run @ 1 MHz
node void itool fft “file2.out” b 1.0 1000000 // run @ 4 MHz
...

terminate TOOL_INDEX >= 1

See also “after” and “before”qualifiers.

(expand) | (noexpand)

These qualifiers are used to control the header expansion in the generated C code. See instruction “header”
for more information.

Please note that alternate syntax is resp. expand$ and noexpand$.

(negative) | (positive) | (dual)

These qualifiers are used in the definition of the node kind “trig” to qualify the trigger type.

Please note that alternate syntax is resp. negative$, positive$ and dual$.

80

(no) | (yes)

Qualifiers (no) and (yes) are used in instruction “synchronize”.

(nocheck)

Qualifier (nocheck) is used in nodes “div” and “mod”.

(hex)

Qualifier “(hex)” is used in instruction “array” to declare the array type. It is internally equivalent
“(digital)” but indicates to the NAPA compiler that the initialization file of the array contains hexadecimal
data (addresses remaining digital type). This is the only usage of this qualifier.

It is also used in instruction “format”.

(digital)

This qualifier is used:

1. In the definition of the node kind “const” and “dc” to force casting.
2. In instruction “array” to declare the ROM or RAM type.
3. In an instruction “declare”.
4. In an instruction “format”.

(analog)

This qualifier is used:

1. In the definition of the node kind “const” and “dc” to force casting.
2. In instruction “array” to declare the ROM or RAM array types.
3. In an instruction “declare”.
4. In an instruction “format”.

(string)

This qualifier is used in an instruction “declare”. This is the only usage of this qualifier.

(constant)

This qualifier is used in an instruction “declare”. This is the only usage of this qualifier.

81

(true)

This qualifier is used in an instruction “declare”. This is the only usage of this qualifier.

(arithmetic) | (geometric) | (harmonic) | (rms)

These qualifiers are used in the definition of node kind “average”.

Please note that alternate syntax is resp. arithmetic$, geometric$, harmonic$ and rms$.

(pointer)

Qualifier “(pointer)” is used in instruction “array” to declare the POINTER array type. This is the only
usage of this qualifier.

(new)

This qualifier is used to modify the definition in instruction “event”.

(<option>[::<parm>])

There is the possibility to define options for the node “duser”, “iuser”, “dtool” and “itool” and for the
instruction “post”. The NAPA compiler builds automatically appropriate macro functions that contain all the
mechanisms to query the existence of one or several options in the instantiation of such functions. The
writer of a user/tool/post function may call the NAPA macros ‘ISOPTION()’ and/or ISNOTOPTION() like
in this example where itool “wonder” has 2 options: (do) and (do_not):

 [file “myfile1.nap”]
...
node void itool wonder “fila.out” s1 1.0 2500.0 (do)
...
node void itool wonder “filb.out” s4 1.0 5000.0
...

...
int wonder_opt[WONDERMAX]; /* options of itool ‘wonder’ */
...

void check_itool_wonder(... , int id) {
 if (ISOPTION("itool_wonder",id,"do") == TRUE) {
 itool_wonder_opt[id] = 1;
 } else if (ISOPTION("itool_wonder",id,"do_not") == TRUE) {
 itool_wonder_opt[id] = 0;
 } else {
 itool_wonder_opt[id] = 0; /* default is (don't) */
 }
 if (ISNOTOPTION("itool_wonder",id) == TRUE) {
 fprintf(stderr, "\nNAPA run time Error: (wonder[%d])\n", id);

82

 fprintf(stderr, " Option is not valid\n");
 fprintf(stderr, " Valid keywords are: (do), (do_not)\n\n");
 napa_exit(EXIT_FAILURE);
 }
 ...
 return;
}
...

The option (void) is always ignored. This is useful when an option has to be passed through a cell interface:
the cell interface demands for a fixed number of parameters, therefore, transmitting a (void) option makes
possible to specify that the default option (i.e no option) is chosen.

A parameter can be added to the option. It must be a constant number (analog or digital):

 [file “myfile2.nap”]
...
node void itool magic “fila.out” s1 1.0 2500.0 (resolution::10)
...
node void itool magic “filc.out” s4 1.0 5000.0 (resolution)
node void itool magic “fild.out” s2 1.0 4000.0
...

 The writer of a user /tool/post function may call the NAPA macros ISOPTION(f,i,o) , ISNOTOPTION(f,i),
ISPARAMETER(f,i,o) and GETPARMADDRESS(f,i,o).

Please note that an alternate syntax for (option) is option$.

(<real_type_output_scaling>)

These suffixes may scale individually real-type output in NAPA ‘output’ instruction.

(y) yocto, 10-24

(z) zepto, 10-21

(a) atto, 10-18

(f) femto, 10-15

(p) pico, 10-12

(n) nano, 10-09

(u) micro, 10-06

(m) milli, 10-03

(k) kilo, 10+03

(M) mega, 10+06

(G) giga, 10+09

(T) tera, 10+12

(P) peta, 10+15

(E) exa, 10+18

(Z) zeta, 10+21

(Y) yotta, 10+24

(%) per cent, 100.0

83

(<integer_type_output_configuration>)

This suffix may configure individually integer-type output in NAPA ‘output’ instruction.

 (x) or (X) hexadecimal representation

84

Short Forms

Short forms help to reduce the length of the netlist
and to enhance the readability.

&update

It is possible to force the update a variable directly in its definition. In this case, no new definition nor
conditional update is possible.

 [file “myfile.nap”]
...
dvar e rand_uniform(1.0, s) &update
dvar f rand_uniform(a, 1.0) &export &update
...

is equivalent to

 [file “myfile.nap”]
...
dvar e rand_uniform(1,0, s)
dvar f rand_uniform(a, 1.0) &export
...
update e
update f
...

&constant

It is possible to declare a variable constant directly in its definition
 [file “myfile.nap”]

...
ivar c 16*16 &constant
...

85

is equivalent to

 [file “myfile.nap”]
...
ivar c 16*16
...
declare c (constant)
...

&export

It is possible to export a variable constant directly in its definition

...
dvar e rand_uniform(1.0, s) &export
dvar f rand_uniform(a, 1.0) &export &update
...

is equivalent to

 [file “myfile.nap”]
...
dvar e rand_uniform(1.0, s)
dvar f rand_uniform(a, 1.0) &update
...
export e f
...

&delayed

It is possible to delay any node (at the exception of node ‘delay’) by one clock cycle with this short form:

 [file “myfile.nap”]
...
node a comp x y &delayed
...

is equivalent to
 [file “myfile.nap”]

..
node s comp x y
node a delay s
...

Use ‘init’ instruction to perform the initialization if necessary.

There is a specific mechanism which adds a flag to nodes ‘duser’, ‘iuser’, ‘dtool’ and ‘itool’ to indicate that
these functions have been delayed and a specific check can be made.

86

Special symbols

Some symbols have a special meaning in NAPA.

$ …

Symbol “$” is used in a cell or data file to flag local variables or nodes.

./ …

Symbol “./” in a string refers to the NAPA file system. It indicates that the pathname is referred to the
directory containing the calling cell or data cell (see the NAPA file system).

~/ …

Symbol “~/” in a string refers to the NAPA file system. It indicates that the pathname is referred to the
directory containing the main netlist (see the NAPA file system).

< … >

Angle brackets are used in several contexts:

1. To mark the pathname of reusables (see the NAPA file system). The library pathname is provided as one
of the command line argument of the NAPA. Angle brackets around a file pathname are used to indicate
that the file is located in the generic library compiler itself.

2. To declare a width limited register (width casting corresponding to unsigned numbers).

87

(…)

Beside their use in regular C expressions, parentheses are used to declare a width limited register (width
casting corresponding to signed numbers).

They are used to indicate that a variable or a node could be unused without creating any warning message.
They are also part of some qualifiers like (real), (int), (hex)…

…

Symbol “#” is used in several contexts:

1. Comment. The NAPA compiler ignores all lines beginning by this symbol.
2. Indirection operator in “string” or “title” definition.
3. In “opcode” instruction to flag the dummy operands of the template.

… // …

Double slashes are used as end of line comment. Any text placed at the right of “//” is ignored by the NAPA
compiler.

.

One dot followed by a number <n> to extract the nth parameter in an array of pointers or in “ganging”.

..

Two dots are used in iterative identifiers. An iterative identifier is used to replace a list of identifiers.

…

Three dots are used as continuation character. It is used to extend an instruction to the next line. Only an
end of line comment could be placed on the right of this symbol.

:

The bit field extractor is used to access a single bit from a digital node.

::

This operator is used for the ‘ganging by name’.

88

Node Kinds

Each node kind represents a piece of C code tuned to realize a physical element,
simple or complex but always written as a customized in-line function.

adc: N levels signed A/D converter

node <nod_nam> adc <num_lev> <nod_in_nam> <nod_ref_nam>

The input and the reference node must be analog type, and the output node will be digital type. The number
of levels must be a positive constant integer. This analog to digital converter is signed (for an unsigned
converter, see “uadc”). A/D output is clipped when input is outside dynamic input range.

These A/D converters are perfectly symmetrical for an odd number of levels. The A/D converters with an
even number of levels are built to correspond exactly to A/D having one level more, but with the upper level
missing.

If “y” is the digitized value corresponding to node “x” digitized with 4 allowable levels:

node ref dc 1.0
node y adc 4 x ref

If “y” is the digitized value corresponding to node “x” digitized with 5 allowable levels:

node ref dc 1.0
node y adc 5 x ref

The transfer functions of these A/D’s are:

89

input A/D 5 levels digital output input A/D 4 levels digital output

- ... -0.75 -2 - ... -0.75 -2

-0.75 ...-0.25 -1 -0.75 ...-0.25 -1

-0.25 ... 0.25 0 -0.25 ... 0.25 0

 0.25 ... 0.75 1 0.25 ...  1

 0.75 ...  2 NA NA

algebra: Chameleonic C expression

This is the most general expression, so this is also the expression where NAPA is unable to perform a
lot of verifications. Inside the expression, you can mix NAPA nodes or variables with C global
variables. Node type is determined from the type of the nodes of the C expression (they must be all
analog or all digital).

node <nod_nam> algebra <C_expression>

For example, if node “y” is 2 times node “a” plus node “b” then

node y algebra (2 * a) + b

There is one restriction, NAPA will determine the type (analog or digital) of node “y” by the types of
“a” and “b” (which must be type consistent), thus you must include at least one node in the algebraic
expression from which NAPA can derive a type.

For example:

node pi algebra 3.14159 // **** WRONG! ****

This is ILLEGAL and will be flagged as an error as NAPA will not know which type to make node
“pi”.

Instead you should use:

node unity dc (analog) 1.0
node pi algebra (unity * 3.14159)

This will result in “pi” being a double. If you tried:

node one dc (digital) 1
node pi algebra (one * 3.14159)

This would result in “pi” being an integer and thus would have a value of 3!
The simplest way in this case is to force the type by using “dalgebra”, or in this particular case simply
“dc”!

node pi dalgebra 3.14159

node pi dc (analog) 3.14159

 CAUTION:
NAPA is unable to track any implicit or explicit casting in an “algebra” expression. Use with care!

See also “after” and “before” qualifiers.

90

alu: User-defined ALU

node <nod_nam> alu <alu_nam> <opcode_num> <input_nod_nam...>

An ALU is described in the templates of “opcode” instructions. Node “alu” is the instantiation of the
ALU in the NAPA netlist.

Opcode number must be an integer. Run time error will be triggered if the current opcode does not
correspond to any opcode definition. The ALU name must correspond to the name of at least one
opcode instruction. Several “alu” can share the same opcode definitions.

For example:

node y alu myalu m in1 in2
...
opcode myalu 0 // nop, hold output
opcode myalu 1 #1 // register 1 to output
opcode myalu 2 - #2 // - register 2 to output
opcode myalu 3 #1 + #2 // sum of registers 1 and 2 to output
...

NAPA will determine the type (analog or digital) of node “y” by the types of “in1” and “in2”.

 CAUTION:
The same “opcode” instructions can be shared by an ALU processing floating points and an ALU
processing integer values. The output type is determined automatically from the input nodes, not by the
templates (be careful about possible implicit casting).

For example:

...
node n1 dc (digital) 3
node n2 dc (digital) 4
#
node i1 dc (digital) 10
node i2 dc (digital) 9
#
node r1 dc (analog) 10.0
node r2 dc (analog) 9.0
#
node y alu myalu n1 i1 i2 // y is digital type, value 1
node z alu myalu n1 r1 r2 // z is analog type, value 1.111111
node e alu myalu n2 i1 i2 // e is digital type, value 3

#
opcode myalu 0 #1 + #2
opcode myalu 1 #1 - #2
opcode myalu 2 #1 * #2
opcode myalu 3 #1 / #2 // opcode currently pointed by ‘n1’
opcode myalu 4 sqrt(#1) // opcode currently pointed by ‘n2’
opcode myalu 5 #1 * #1
opcode myalu 6 0
...

91

and: N inputs AND element

node <nod_nam> and <nod_nam...>

node y and a b c

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

average: Average of N inputs

node <nod_nam> average <[- | +] nod_nam...> [(<option>)]

The output node is real type. Input are real types. This node allows N input nodes. Options are:
(arithmetic), (geometric), (harmonic) or (rms). For geometric and harmonic average, negative inputs
will be set to 0.0. Default is arithmetic average.

node w1 average x -y z
node w2 average x -y z (harmonic)

bshift: Barrel shifter

node <nod_nam> bshift <[- | +] shift_val> <nod_nam>
node <nod_nam> bshift <[- | +] shift_var> <nod_nam>
node <nod_nam> bshift <[- | +] shift_nod> <nod_nam>

ivar sh4 -4
...
node y bshift 4 x
node z bshift -sh4 x

Bits from input node are rolled, to the left for a positive shift constant, to the right for a negative one. In
the example above, the values of “y” and “z” are equal to the value of “x” with the bits shifted by 4
positions to the right. Input node and shift value (node, variable or constant) must be digital type. Shift
value can be signed. Output is digital type.

The register to shift is by default a 32 bits register.

(16) node n bshift -4 x

92

0 1 1 1 1 0 0 1 0 10 1 0 1 0 1

15 14 13 11 10 9 8 7 6 512 4 3 2 1 0

0 1 1 1 1 0 0 1 0 10 10 1 0 1

15 14 13 11 10 9 8 7 6 512 43 2 1 0

btoi: N bits conversion to unsigned integer

node <nod_nam> btoi <nod_nam | 0 | 1> <nod_nam | 0 | 1...>

node y btoi b7 b6 b5 b4 b3 b2 b1 b0
node z btoi 1 1 b5 0 0 0 b1 0

Input nodes MUST be digital type (binary value); output node is digital type. Inputs can be nodes or
constant 0 or 1 but not variables. They are sorted from MSB to LSB. Node values must be 0 or 1. Other
values are accepted but will conduct to inconsistent results. See also “itob”.

buffer: Non inverting buffer

node <nod_nam> buffer <nod_nam>

node y buffer x

The input node MUST be digital type, and output node is always digital type. Output is 0 is input is 0, 1
otherwise. It is therefore NOT equivalent to a “copy” node dealing with a digital input!

bwand: N inputs bit wise AND

node <nod_nam> bwand <nod_nam...>
node <nod_nam> bwand <hexadecimal_constant> <nod_nam...>

<8> node a bwand b c d

The input node MUST be digital type, and output node is always digital type. Output is the bit wise
‘and’ of the inputs. First input could be either a node either a hexadecimal constant.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwbuffer: Bit wise non inverting buffer

node <nod_nam> bwbuffer <nod_nam>

<16> node y bwbuffer x

The input node MUST be digital type, and output node is always digital type. Output is a copy of input.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwinv: Bit wise inverter

node <nod_nam> bwinv <nod_nam>

<12> node y bwinv x

93

The input node MUST be digital type, and output node is always digital type. Output is the bit wise
inversion of the input.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwnand: N inputs bit wise NAND

node <nod_nam> bwnand <nod_nam...>
node <nod_nam> bwnand <hexadecimal_constant> <nod_nam...>

<4> node a bwnand b c d

The input nodes MUST be digital type, and output node is always digital type. Output is the bit wise
‘nand’ of the inputs. First input could be either a node either a hexadecimal constant.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwnor: N inputs bit wise NOR

node <nod_nam> bwnor <nod_nam...>
node <nod_nam> bwnor <hexadecimal_constant> <nod_nam...>

<9> node a bwnor b c d e

The input nodes MUST be digital type, and output node is always digital type. Output is the bit wise
‘nor’ of the inputs. First input could be either a node either a hexadecimal constant.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwnot: Bit wise bit wise NOT

node <nod_nam> bwnot <nod_nam>

<28> node y bwnot x

Strictly equivalent to “bwinv”.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwor: N inputs bit wise OR

node <nod_nam> bwor <nod_nam...>
node <nod_nam> bwor <hexadecimal_constant> <nod_nam...>

<6> node a bwor b c d

The input nodes MUST be digital type, and output node is always digital type. Output is the bit wise
‘or’ of the inputs. First input could be either a node either a hexadecimal constant.

94

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwxnor: N inputs bit wise XNOR

node <nod_nam> bwxnor <nod_nam...>
node <nod_nam> bwxnor <hexadecimal_constant> <nod_nam...>

<2> node a bwxnor b c d

The input nodes MUST be digital type, and output node is always digital type. Output is the bit wise
‘xnor’ of the inputs. First input could be either a node either a hexadecimal constant

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

bwxor: N inputs bit wise XOR

node <nod_nam> bwxor <nod_nam...>
node <nod_nam> bwxor <hexadecimal_constant> <nod_nam...>

<3> node a bwxor b c d

The input nodes MUST be digital type, and output node is always digital type. Output is the bit wise
‘xor’ of the inputs. First input could be either a node either a hexadecimal constant.

TO BE SAFE, ALL BITWISE OPERATIONS SHOULD BE WIDTH LIMITED.

cell: Sub circuit instantiation from a file

node <nod_nam> cell <inst_nam> <“fil_nam”> <nod_nam | parm...>

The “cell” cannot be strictly be called a node but a pseudo-node, this is the instantiation of a sub-netlist.
The sub-netlist is flattened inside the main netlist without any neither compilation nor simulation time
penalty. The file “fil_nam” must contain a NAPA cell netlist. Instantiation name <inst_nam> of the cell
must be unique and cannot be reused for another cell. Every cell internal node or variable must begin
by character “$”. Nodes or parameters not beginning by “$” are considered as global. Very first line
must begin by keywords “cell interface“ followed by the output node followed by optional input nodes,
and/or parameters, with symbol “$” as prefix.

Both cell interface and cell formal parameters accept iterative identifiers (see instruction "data").

This pseudo-node “cell” does not support the transfer of parameters by name.

A dedicated directory is reserved to store a library of reusable cells. The pathname of this library is
indicated to NAPA through the command line. Using angle brackets “< ... >“ is a short form to call a
cell contained in this directory. Supposing that the pathname of this library is “/NAPAlib/net”, the
following expressions are perfectly equivalent:

node n3 cell pls1 <my_cel.net> n1 n2
node n4 cell pls2 “/NAPAlib/net/my_cel.net” n1 n2

The cell instantiation obeys to the NAPA file system. In the following examples, the first call points to
a file located in the main directory, the second call points to the current cell directory, the third call

95

points to the root directory, i.e. the working directory from which the NAPA command has been
invoked:

node n3 cell pls1 “~/my_cel.net> n1 n2
node n4 cell pls2 “./my_cell” n1 n2
node n5 cell pls3 “my_cell” n1 n2

Follow NAPA recommendations, use suffix “.net” for cell netlist (see appendix C page 161).

 CAUTION:

1. It is not recommended to use “decimate”, “interpolate”, “nominal” or “drop” instructions
inside a cell as they are hidden in cell file but affect the sampling rate of all objects defined after them.
2. Do not forget that your cell should tolerate signed parameters. Use parenthesis if possible in
the body of the cell (in the example below, we use parenthesis with “$parm2” for this reason).

file “ex.net”

cell_interface $out $in1 $in2 $parm1 $parm2

node $a1 dc $parm1
node $a2 sum $in1 $in2 $a1
node $out dalgebra $a2 * sine(_PI_ - ($parm2))

file “circuit.nap”

node y cell foo1 “ex.net” a b 2.0 1.0
node z cell foo2 “ex.net” b -a p -4.0
...

Internal nodes of instantiated cell can be accessed from main netlist using the instance name as prefix:
<inst_name>__<nod_nam> (double underscore). It is interesting for probing internal instance nodes
(“output”, “itool”, “dtool”...) but not recommended as it is a tricky way to input or output signals:

In the previous example: foo1__a1, foo1__a2, foo2__a1, foo2__a2

Respective nodes and parameters of the main netlist replace nodes and parameters of the interface.
Please note that data macroprocessors (MAC ...) will NEVER process these cell internal netlists, as
macroprocessors are not aware of the content of these files.

See also instruction “data” and pseudo-node “generator”.

change: Watchdog

node <nod_nam> change <nod_nam> [(<option>)]

node y change x // output is -1, 0 or 1
node z change w (dual) // output is -1, 0 or 1
node z change w (positive) // output is 0 or 1
node z change w (negative) // output is 0 or 1
node z change w (both) // output is 0 or 1

Input is digital or analog type. Output node is digital type. Options are (positive), (negative), (both) or
(dual). Output is 1 when <nod_nam> changes, otherwise output node is 0, at the exception of option
(dual) where output will be +1 or -1 depending on the sign of the change. Default is (dual).

96

clip: Clip element

node <nod_nam> clip <[- | +] threshold_l> <[- | +] threshold_h> <nod_nam>

node y clip 0.5 4.5 x

The output node is the same type as the input node (analog or digital). The thresholds can be variables
but not nodes nor expressions.

clock: Digital clock generator

node <nod_nam> clock <”pattern[.pattern]”>
node <nod_nam> clock <”pattern[.pattern]”> <number>
node <nod_nam> clock <”pattern[.pattern]”> <variable>
node <nod_nam> clock <string_variable>
node <nod_nam> clock <string_variable> <number>
node <nod_nam> clock <string_variable> <variable>

string pat “0.01”
ivar len 100
node w clock “0010 0110”
node y clock “010.101100”
node z clock “1.1011” 3
node z clock pat len

Output is digital type with a value 0 or 1 according to the pattern. A pattern is a string of zeroes and
ones enclosed by double quotes, spaces are allowed. A period ‘.’ in the pattern separates an initial
aperiodic pattern from a periodic pattern. In the examples above, the node w will repeat the sequence
‘00100110’, the node y will start by the sequence ‘010’ followed by a repetition of the sequence
‘101100’. An optional integer number (or a constant integer variable) indicates the repetition of each
pattern descriptor. The default value of the repetition factor is 1. In the examples above, the node z will
produce the sequence ‘111’ followed by a repetition of the sequence ‘111000111111’.

NB: If a string variable is used as pattern descriptor, it must be defined before the concerned clock
definition.

comp: Comparator

node <nod_nam> comp <[- | +] plus_input_node> <[- | +] minus_input_node>
node <nod_nam> comp <[- | +] plus_input_node> <[- | +] variable>
node <nod_nam> comp <[- | +] variable> <[- | +] minus_input_node>
node <nod_nam> comp <[- | +] plus_input_node> <[- | +] number>
node <nod_nam> comp <[- | +] number> <[- | +] minus_input_node>

node y comp sigplus sigminus

The input must be either both analog type, either both digital type. One of the inputs must be a node.
Other input could be a node, a variable or a constant number. Output node is digital type. Output is 1 if
<sigplus> is larger or equal to <sigminus>; otherwise output is 0.

A delayed comparator, i.e delayed by 1 clock cycle, is easy to model using the short form ‘&delayed’:

97

node y comp sigplus sigminus &delayed

 TIPS:
This comparator has no hysteresis. It is possible to build a hysteresis comparator quite easily. The
following example shows an analog differential comparator with a programmable hysteresis
encapsulated in a reusable cell. Formal inputs of the cell are input nodes “$p” and “$m”, hysteresis
“$h”. Output is “$out”:

“my_cell.net”

cell_interface $out $p $m $h

hysteresis comparator

declare (analog) $p $m $h

node $out comp $p $th
node $dl delay $out
node $mx mux $dl $lh $ll
node $th sum $m $mx

node $lh dc ($h/2.0)
node $ll dc -($h/2.0)

const: Constant

node <nod_nam> const [<(digital)>] <C_expression>

node <nod_nam> const <(analog)> <C_expression>

The value of the C expression MUST be a number. By default “const” node is considered as digital
type if no explicit casting is done. Node will be declared internally as “I_TYPE” or “R_TYPE”
according to casting. Please note that casting (hex) is not supported here.

Traditional warnings concerning casting remain valid!

node y1 const 123
node y2 const (digital) 10
node nqst const (analog) 2.0 * value

 CAUTION:
The “const” nodes are ONLY evaluated at initialization [still the initial value is set to DIGITAL_INI or
ANALOG_INI as other node kinds]. It is thus forbidden to refer to other nodes. The use of variables is
allowed. Of course the “const” nodes will use the variable definition and will ignore any variable
updates.

copy: Signed copy

node <nod_nam> copy <[- | +] nod_nam>

node y copy -x

Output is a simple signed copy of input. Type of output is identical to type of the input.

98

cosine: Cosine wave voltage generator

node <nod_nam> cosine <[- | +] offset> <ampl> <freq> <[- | +] phase>

node y cosine 0.0 1.0 1000.0 _PI_

Similar to “sine”. Output is analog type.

This node is built to support amplitude, frequency and phase modulation.

 TIPS:
If there is no need of frequency nor phase modulation, prefer to use the node “osc” with an additional
phase of PI/4, as trigonometric functions are pretty long to compute and impact badly the speed of the
simulations.

dac: N levels signed D/A converter

node <nod_nam> dac <num_lev> <nod_in_nam> <nod_ref_nam>

The input node must be digital type, the reference node must be analog type and the output node will
be analog type. The number of levels must be a positive constant integer. This digital to analog
converter is signed (for an unsigned converter, see “udac”).

D/A output is clipped when input is outside dynamic input range.

These D/A converters are perfectly symmetrical for an odd number of levels. The D/A converters with
an even number of levels are built to correspond exactly to D/A having one level more, but with the
upper level missing.

If “y” is the analog value corresponding to node “x” quantized with 8 allowable levels:

node ref dc 1.0
node y dac 8 x ref

If “y” is the analog value corresponding to node “x” quantized with 9 allowable levels:

node ref dc 1.0
node y dac 9 x ref

99

The transfer functions of these D/A’s are:

input D/A 9
levels

analog output input D/A 8
levels

analog
output

 n <= -4 -1.00 n <= -4 -1.00

-3 -0.75 -3 -0.75

-2 -0.50 -2 -0.50

-1 -0.25 -1 -0.25

 0 0.00 0 0.00

 1 0.25 1 0.25

 2 0.50 2 0.50

 3 0.75 n >= 3 0.75

 n >= 4 1.00 NA NA

dalgebra: C expression cast to real type

node <nod_nam> dalgebra <C_expression>

node y dalgebra gaussian(0.0, 0.10) + off

This is just like an “algebra” node, but NAPA does not try to determine the type, it is automatically
cast to double. Thus this type of node does not need to refer to any other node, as a plain algebra node
does.
Inside the expression, you can mix NAPA nodes or variables with C global variables.

Traditional warnings concerning casting remain valid!

See also: “after” qualifier page 78.

dc: DC voltage source

node <nod_nam> dc [<(analog)>] <C_expression>

node <nod_nam> dc <(digital)> <C_expression>

The value of the C expression MUST be a number. By default “dc” node is considered as analog type if
no explicit casting is done. Node will be declared internally as “I_TYPE” or “R_TYPE” according to
casting.
Please note that casting (hex) is not supported here.

Traditional warnings concerning casting remain valid!

node y1 dc 1.23
node y2 dc (digital) 10
node nqst dc (analog) 2.0 * freq

 CAUTION:
The “dc” nodes are ONLY evaluated at initialization [still the initial value is set to ANALOG_INI or
DIGITAL_INI as other node kinds]. It is thus forbidden to refer to other nodes. The use of variables is
allowed. Of course the “dc” nodes will use the variable definition and will ignore any variable updates.

100

delay: Single or multiple delay

The output node is the same type as the input node (analog or digital type).

node <nod_nam> delay <[- | +] nod_nam>
node <nod_nam> delay <number> <[- | +] nod_nam>
node <nod_nam> delay <ivar_name> <[- | +] nod_nam>

For instance: “y” is a delayed value of “x”:

node y delay x

Consider initialization!

The delay represents a kind of memory. Use the instruction “init” to initialize the output node of the
delay if necessary.

Here is an example of an analog delay with initialization.

node y delay x
init y 1.0 + sin(0.85)

 TIPS:
Delays are used quite often. Delay can be used for instance to build integrators and differentiators:
Here is an example of cell realizing a delayed integrator with initial starting value:

“my_integrator1.net”

cell_interface $o $i $start
init $o $start
node $o delay $a
node $a sum $o $i

The non delayed integrator with initial starting value:

“my_integrator2.net”

cell_interface $o $i $start
init $d $start
node $d delay $o
node $o sum $d $i

A differentiator cell can be built as easily:

“my_differentiator.net”

cell_interface $o $i
node $d delay $i
node $o sub $i $d

Please note that these cells are chameleonic as the output node is conforming to the input node.

Multiple delays: the output node is the same type as the input node (analog or digital). The number of
delays must be a positive number or an “ivar” with a constant positive value larger or equal to 0 (i.e.
not updated). The multiple delay is translated in C in an efficient way based on pointer.

For instance, y is x delayed by 16 sampling clock periods:

node y delay 16 x

101

and z is x delayed by 2 sampling clock periods:

ivar n 2
node z delay n x

The multiple “delay” node represents an efficient way to describe multiple delays. Use the instruction
“init” to initialize the output node of the “delay” if necessary. All internal storage elements will be
initialized to that value. To initialize individually every internal data to a value, you need to replace the
“delay” by a sequence of “delay” nodes.

NB: The short form ‘&delayed’ may be used advantageously in many situations.

differentiator: Non inverting differentiator

node <nod_nam> differentiator <[-|+] nod_nam>

node y differentiator -x

The output node is the same type as the input node (analog or digital). Output is the non inverting non
delayed differentiation of the input.

div: Divider element

node <nod_nam> div <[- | +] nod_nam> <[- | +] nod_nam> [(nocheck)]
node <nod_nam> div <[- | +] nod_nam> <[- | +] var_nam> [(nocheck)]
node <nod_nam> div <[- | +] nod_nam> <[- | +] number> [(nocheck)]

If “y” is the division of nodes “a” and “b” then

node y div a b

The node “a” and node (or variable or number) “b” MUST be the same type (analog or digital), and
output node “y” will be of this type. Division by zero generates an error message and the exit of the
simulation. Qualifier “(nocheck)” suppresses the test of the division by zero.

 NOTE:
This node accepts a node, a variable or a constant as second input. There is no specialization like
“gain” and “prod” or “sum” and “offset”. Very few nodes have the same syntax (see “mod”).

dtoi: Converts an analog type node to digital type

node <nod_nam> dtoi <nod_nam>

If “x” is an analog type node, node “y” will be a digital type node with the rounded value of node “x”:

node y dtoi x

“dtoi” can be considered as an ideal multi-level A/D without clipping with a step equal to 1.0 (see also
“adc” and “uadc”).

102

 CAUTION: This conversion is not equal to a simple casting! It corresponds to a mathematical
rounding. This node is NOT equivalent to ‘node y ialgebra (long long) x’!

dtool: User-defined tool

node <nod_nam> dtool <dtool_nam> [<list>] [(<opt>)]

Similar to “duser”, but “dtool” is synchronizable and is not reset automatically during a restart. Output
node is generally used to control the simulation. If output is not used, consider to use identifier “void”,
to avoid unwanted warning message. See user-defined functions page 140. See also the instruction
‘post’.

 “duser”’ accepts optional qualifiers. See (option) in chapter Instruction Qualifiers.

 CAUTION: Nodes “dtool” and “duser” are not equivalent.

See also “after” and “with” qualifiers.

duser: User-defined function

node <nod_nam> duser <duser_nam> [<list>] [(<opt>)]

This user-defined function returns a real type value. You write a function in C and put it in the C header
file. You can pass the function any number of nodes or constants, including no arguments at all. You
need to follow guidelines to write user's defined functions called by “duser” node type. As NAPA will
include automatically check, initialization, reset..., you need to provide a complete set of functions.

For a “duser” function called ‘foo’ having 5 arguments, you need to provide these C functions:

double duser_foo_05(..., int id) function itself
void check_duser_foo_05(..., int id) called at initialization
void init_duser_foo_05(..., int id) called at initialization
void reset_duser_foo_05(..., int id) called during a restart5

void close_duser_foo_05(..., int id) called at the end

Where the last input parameter (id) must be an integer representing the instantiation number of the
function, an additional parameter, provided by the NAPA compiler. Some of these functions could be
empty but must exist.

For example, user-defined function “clipper” could be defined like this:

double duser_clipper_02(double x, double limit, int id) {
 if (x > limit) {
 return limit;
 }
 else if (x < -limit) {
 return -limit;
 }
 return x;
}

5 Code in function ‘reset_duser..() must be re-entrant!

103

Other related functions have to be provided (mandatory): for example:

void duser_check_clipper_02(double x, double limit, int id) {
 if (limit < 0.0) {
 fprintf(stderr, “NAPA run time error (clipper[%d])”, id);
 fprintf(stderr, “clipping limit cannot be negative)\n”);
 napa_exit(EXIT_FAILURE);
 }
 return;
}

void duser_init_clipper_02 (double x, double limit, int id) {
 return;
}

void duser_close_clipper_02(double x, double limit, int id) {
 return;
}

void duser_reset_clipper_02(double x, double limit, int id) {
 duser_check_clipper_02(x, limit, id); /* check it again */
 return;
}

NAPA calls these functions when necessary. You can then use the function in the netlist. For example,
if node “y” is the clipped value of node “x” with a clipping value of 2.5, then

node y duser clipper x 2.5

Please note that the instantiation identifier is automatically added by NAPA itself (0, 1 ...).

Sometimes, it is necessary to send qualifiers to modify the behavior of the user functions. As this
qualifier is alphanumeric, there is a risk of collision with existing nodes or variables. NAPA allows for
user and tool nodes to place this qualifier between parentheses:

node y duser synchro_linsweep 0.0 99.0 100 (shuffle)

“duser”’ accepts optional qualifiers. See (option) in chapter Instruction Qualifiers.

 CAUTION: Nodes “dtool” and “duser” are not equivalent.

See also: “after” qualifier page 78.

equal: Equality

node <nod_nam> equal <[- | +] nod_nam> <[- | +] nod_nam> (< precision>)
node <nod_nam> equal <[- | +] nod_nam> <[- | +] variable> (< precision>)
node <nod_nam> equal <[- | +] variable> <[- | +] nod_nam> (< precision>)
node <nod_nam> equal <[- | +] nod_nam> <[- | +] number> (< precision>)
node <nod_nam> equal <[- | +] number> <[- | +] nod_nam> (< precision>)

node x equal a1 a5

104

node y equal a2 a9 0.01
node z equal d3 10 5

The input to be compared must be either both analog types, either both digital types. One of the 2 first
inputs must be a node. Other input could be a node, a variable or a constant number. Output node is
digital type. Output is set to 1 if input nodes are equal; otherwise output is set to 0.

For analog types, equality is by default tested within a relative tolerance of 5*EPSILON. If a precision
is added in the instruction, the equality for analog or digital types is tested with the indicated absolute
tolerance.

fzand: N inputs AND element (Fuzzy logic)

node <nod_nam> fzand <nod_nam...>

node y fzand a b c

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

fzbuffer: non inverting buffer (Fuzzy logic)

node <nod_nam> fzbuffer <nod_nam>

node y fzbuffer x

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Input must be analog type.

In addition to the function of buffer, this function is also used to limit the signal to the interval [0, 1]
compatible with all the fuzzy logic functions.

fzinv: Negation element (Fuzzy logic)

node <nod_nam> fzinv <nod_nam>

node y fzinv x

Strictly equivalent to “fznot”.

fznand: N inputs NAND element (Fuzzy logic)

node <nod_nam> fznand <nod_nam...>

node y fznand a b c

Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

105

fznor: N inputs NOR element (Fuzzy logic)

node <nod_nam> fznor <nod_nam...>

node y fznor a b c

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

fznot: Negation element (Fuzzy logic)

node <nod_nam> fznot <nod_nam>

node y fznot x

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Input must be analog type.

fzor: N inputs OR element (Fuzzy logic)

node <nod_nam> fzor <nod_nam...>

node y fzor a b c

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

fzxnor: 2 inputs XNOR element (Fuzzy logic)

node <nod_nam> fzxnor <nod_nam...>

node y fzxnor b

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

fzxor: 2 inputs XOR element (Fuzzy logic)

node <nod_nam> fzxor <nod_nam...>

node y fzxor a b

Zadeh operator. Output node is always analog type (between 0.0 and 1.0). Inputs must be analog type.

gain: Gain element

node <nod_nam> gain <[- | +] constant> <nod_nam>
node <nod_nam> gain <[- | +] variable> <nod_nam>

106

The output node is the same type as the input node (analog or digital). The gain factor can be a constant
or a variable but not a node nor an expression. Variable or constant type must be consistent with node
type.

If “y” is equal to “x” times 2.5 then

node y gain 2.5 x

A user's variable can be used as gain factor:

dvar g pow(10.0, ampldB/20.0)
node y gain g x

 CAUTION: Nodes “gain” and “prod” are not equivalent.

generator: Sub circuit generation from a file

node <nod_nam> generator <inst_nam> <“fil_nam”> <nod_nam | parm...>

This is not a node but a pseudo-node. “fil_nam” is an executable capable to generate a NAPA cell file
(see “cell”). Instantiation name <inst_nam> of the generated cell must be unique and cannot be reused
for another cell or generator.

A directory is dedicated to store a library of reusable generators. The pathname of this library is
indicated to NAPA through the command line. Using angle brackets “< … >“ is a short form to call a
generator contained in this directory. Supposing that the pathname of this library is “/napalib/gen”, the
following expressions are perfectly equivalent:

node n1 generator pls1 <mkcel> n2 100.0
node n3 generator pls1 “/napalib/gen/mkcel” n2 100.0

The generator is an executable (or a script UNIX, DOS...) capable to generate a NAPA cell file. The
NAPA compiler calls the executable as a call to system (thanks to ANSI-C function “system”):

system(“/napalib/gen/mkcel pls1.gen n2 100.0”)

The user has thus to create an executable (or a script) taking arguments “pls1.gen” corresponding to its
output file and strings “n2” and “100.0” and generating a syntactically correct NAPA cell (see node
“cell”). Cell should be generated as file “pls1.gen” (the instantiation name followed by the suffix
“.gen”).

The NAPA compiler uses the newly created cell as a regular NAPA cell, generating automatically an
internal call corresponding to:

node n1 cell pls1 “pls1.gen” n2 100.0

The cell file “pls1.gen” will contain a netlist written by the generator like:

“pls.gen”

cell_interface $o $i $parm
...
node $o ...
...

To refer to the directory containing the main netlist, use “~/....”. It indicates to NAPA that the pathname
is not referring to the directory containing the calling cell. In the following examples, the first call
points to a file located in the main directory. The second points to the root directory:

107

node n1 generator pls1 “~/mkcel” n2 100.0
node n3 generator pls1 “mkcel” n2 100.0

Pseudo-node generator accepts iterative identifiers (see instruction "data").

Follow NAPA recommendations, use no suffix for the name of the executable in UNIX, use suffix
‘.exe’ in DOS (see appendix C page 161).

hold: Hold and track element

node <nod_nam> hold <control_nod_nam> <nod_nam>

node y hold ctr x

The control MUST be digital type. The output node is the same type as the input node (analog or
digital). Node “y” tracks the input node “x” if the control node is 0 (see also similar node “track”). It is
held otherwise.

Consider initialization!

ialgebra: C expression cast to integer type

node <nod_nam> ialgebra <C_expression>

node y ialgebra (2 * digit) + 1

This is just like an “algebra” node, but NAPA does not try to determine the type, it is automatically
cast to integer. Thus this type of node does not need to refer to any other node, as a plain algebra node
does.
Inside the expression, you can mix NAPA nodes or variables with C global variables.

Traditional warnings concerning casting remain valid!

See also: “after” qualifier page 78.

integrator: Non inverting integrator

node <nod_nam> integrator <[-|+] nod_nam>

node y integrator -x
node z integrator w &delayed

The output node is the same type as the input node (analog or digital). Output is the non inverting non
delayed integration of the input. But using the short form ‘&delayed’, it is easy to model a delayed
integrator!

Binary counter is realized in a one-line NAPA instruction:

<3> node y integrator One

Output y is 1 2 3 4 5 6 7 0 1 2 3 4 ..

108

Consider initialization!

At the initialization by default, output node is equal to “DIGITAL_INI” or “ANALOG_INI. Use the
instruction “init” to overwrite the default initialization of the output:

<3> node y integrator One
 init y 7

Output y is now 0 1 2 3 4 5 6 7 0 1 2 3 ..

inv: Negation element (Boolean logic)

(strictly equivalent node: “not”).

node <nod_nam> inv <nod_nam>

node y inv x

The input node MUST be digital type, and output node is always digital type (0 or 1).

itob: Bit extractor from digital node

node <nod_nam> itob <bit_rank> <nod_nam>

Input node MUST be digital type (positive value), output node is digital type (0 or 1). <bit_rank> is the
rank of the bit to be extracted from the integer stored in <nod_nam>. The parameter <bit_rank> must
be an integer. It is the responsibility of the user to keep the value of <bit_rank> positive.

“bseven” is the seventh bit of integer “w” (LSB = 0):

node bseven itob 7 w

If integer “w” is equal to ‘001 010 000 001’, “bseven” is equal to 1. See also “btoi” and bit field.

 CAUTION: Distinguish “itob” and bit field:
Bit fields are also used to extract a single bit from a digital node. They use the same method to extract
the bit. There is a subtle difference. The bit field creates an automatic bit extraction made in the same
segment as the node from which the bit must be extracted. “itob” extracts the bit from the node where
it is placed. Sampling is made at local sampling frequency!

itod: Converts a digital type node to analog type

node <nod_nam> itod <nod_nam>

If node “x” is digital type node, node “y” will be an analog type node with the same value as “x”.

node y itod x

“itod” can be considered as an ideal multi-level D/A without clipping with a step equal to 1.0 (see also
“dac” and “udac”).

109

itool: User-defined tool

node <nod_nam> itool <itool_nam> [<list>] [(<opt>)]

Similar to “iuser”, but “itool” is synchronizable and is not reset automatically during a restart. Output
node is generally used to control the simulation. If output is not used, consider to use identifier “void”, to
avoid unwanted warning message. See user-defined functions page 140. See also the instruction ‘post’.

“itool” accepts optional qualifiers. See (option) in chapter Instruction Qualifiers.

 TIPS: instruction 'tool'' is expanded in a “itool'” node returning “void”'.

 CAUTION: Nodes “dtool” and “duser” are not equivalent.

See also “after” and “with” qualifiers.

iuser: User-defined function

node <nod_nam> iuser <iuser_nam> [<list>] [(<opt>)]

This user-defined function returns an integer type value. You write a function in C and put it in the C
header file. You can pass the function any number of nodes or constants, including no arguments at all.
You need to follow guidelines to write user's defined functions called by “iuser” node type. As NAPA
will include automatically check, initialization, reset..., you need to provide a complete set of functions.

For a “iuser” function called ‘foo’ with 3 arguments, you need to provide:

long iuser_foo_03(..., int id) function itself
void check_iuser_foo_03(..., int id) called at initialization
void init_iuser_foo_03(..., int id) called at initialization
void reset_iuser_foo_03(..., int id) called during a restart6

void close_iuser_foo_03(..., int id) called at end of simulation

Where the last input parameter (id) must be an integer representing an additional parameter, the
instantiation number of the function provided by the NAPA compiler. Some of these functions could be
empty but must exist.

For example, if you want to use a function “FourBitADC” in a NAPA netlist, you could define the
following functions in a header file (C language):

long iuser_FourBitADC_02 (double x, double ref, int id) {
/* “id” is an identifier of the instantiation handled */
/* directly by NAPA (0, 1, ...) */
 if (x < -1.25*ref) {
 return 0;
 } else if (x < 0.0*ref) {
 return 1;
 } else if (x < 1.25*ref) {
 return 2;
 } else {
 return 3;
 }

6 Code in function ‘reset_iuser..() must be re-entrant!

110

}

void init_iuser_FourBitADC_02 (double x, double ref, int id) {
 /* code executed during the initialization */
 return;
}

void check_iuser_FourBitADC_02 (double x, double ref, int id) {
 /* code executed during the check phase */
 if (ref <= 0.0) {
 fprintf(stderr, “NAPA run time Error (FourBitADC[%d])”, id);
 fprintf(stderr,” reference cannot be negative\n”);
 napa_exit(EXIT_FAILURE);
 }
 return;
}

void reset_iuser_FourBitADC_02 (double x, double ref, int id) {
 /* code executed during the reset */
 return;
}

void close_iuser_FourBitADC_02 (double x, double ref, int id) {
 /* code executed at the end of the simulation */
 return;
}

These functions are called automatically by NAPA when necessary. You could then use this in the
netlist. For example if node “y” is the digitized value node “x”, supposing the header file being
“adc4.hdr” then

header “adc4.hdr”
node y iuser FourBitADC x 1.00

Instantiation identifier “id” is automatically added by NAPA (id = 0, 1...).

Sometimes, it is necessary to send qualifiers to modify the behavior of the user functions. As this
qualifier is alphanumeric, there is a risk of collision with existing nodes or variables. NAPA allows for
user and tool nodes to place this qualifier between parentheses:

node y iuser sequence 1 10 (up)

“user” accepts optional qualifiers. See (option) in chapter Instruction Qualifiers.

 CAUTION: Nodes “dtool” and “duser” are not equivalent.

See also “after” qualifier.

latch: SR Latch

node <nod_nam> latch <set_input> <reset_input>

node y latch sigset sigreset

111

The input nodes must be both digital types. Output node is digital type. Output is 0 or 1. Output is 1 if
last signal to be at 1 was <set_input>. Output is 0 if last signal to be at 1 was <reset_input>. In case of
conflicting transitions giving an undetermined output, simulation stops with an appropriate error
message.

Consider initialization!

At the initialization, latch output node is equal to “DIGITAL_INI” by default. Use the instruction “init”
to overwrite the default initialization of the output:

node y latch sigset sigreset
init y 1

lshift: Left shift element

node <nod_nam> lshift <shift_val> <nod_nam>
node <nod_nam> lshift <shift_var> <nod_nam>
node <nod_nam> lshift <shift_nod> <nod_nam>

ivar sh4 4
...
node y lshift 4 x
node z lshift sh4 x

In the example above, the values of “y” and “z” are equal to the value of “x” with the bits shifted by 4
positions to the left. Input node and shift value (node, variable or constant) must be digital type. Output
is digital type.

max: Maximum of N inputs

node <nod_nam> max <[- | +] nod_nam...>

If “y” is the maximum of nodes “a”, “b”, and “-c” then

node y max a b -c

The nodes “a”, “b”, and “c” MUST be the same type (analog or digital), and output node “y” will be of
this type.

merge: N inputs multiplexer from exclusive loop
segments

node <nod_nam> merge <[- | +] nod_nam...> [(nocheck)]

The input nodes must be either all analog type, either all digital type. The output node will be the same
type as input. Output is merging the input nodes, nodes must be originated in exclusive segments,
otherwise an appropriate error message is generated. Qualifier “(nocheck)” suppresses this test.

In this example below, the node “y” gets the value of node “a1”, the value of node “-a2” or the value of
“a3” when the segment corresponding respectively to these nodes is activated. Result will be a
sequence of values of “a1, a3, -a2, a1, a3, -a2, a1, …”

112

…
decimate fs 3 // running 1 over 3 (with an offset 0)
node a1 …

decimate fs 3 2 // running 1 over 3, with an offset 2
node a2 …

decimate fs 3 1 // running 1 over 3, with an offset 1
node a3 …

nominal fs
node y merge a1 -a2 a3
…

min: Minimum of N inputs

node <nod_nam> min <[- | +] nod_nam...>

If “y” is the minimum of nodes “a”, “b”, and “-c” then

node y min a b -c

The nodes “a”, “b”, and “c” MUST be the same type (analog or digital), and output node “y” will be of
this type.

mod: Modulo divider element

node <nod_nam> mod <[- | +] nod_nam> <[- | +] nod_nam> [(nocheck)]
node <nod_nam> mod <[- | +] nod_nam> <[- | +] var_nam> [(nocheck)]
node <nod_nam> mod <[- | +] nod_nam> <[- | +] number> [(nocheck)]

If “y” is the division modulo node “b” of node “a” then

node y mod a -b

The node “a” and the node (or variable or number) “b” MUST be the same type (analog or digital), and
output node “y” will be of this type. Division by zero generates an error message and the exit of the
simulation. Qualifier “(nocheck)” suppresses the test of the division by zero.

 NOTE:
This node accepts a node, a variable or a constant as second input. There is no specialization like
“gain” and “prod” or “sum” and “offset”. Very few nodes have the same syntax (see “div”).

muller: C Muller element, N inputs (Boolean logic)

node <nod_nam> muller <nod_nam...>

113

node y muller a b

The input nodes MUST be digital type, and output node is always digital type (0 or 1). The output of a
C Muller element follows the inputs if they are all ‘TRUE’ or all ‘FALSE’. It retains its previous value in
the other cases. This is a digital hysteresis element.

Consider initialization!

This node can be initialized (default is 0):

node a muller a b
...
init a 0

mux: N inputs multiplexer controlled by integer
levels

node <nod_nam> mux <ctrl_nod_nam> <[- | +] nod_nam | void...>
node <nod_nam> mux <ctrl_var_nam> <[- | +] nod_nam | void...>

node y mux ctrl x1 -x2 x3 x4

The input nodes must be either all analog type, either all-digital type. The output node will be the same
type as input. Control node (variable) type must be digital type. When control equals to 0, output is
connected to first input node, when control equals to 1, output is connected to second node ...etc. If
control is out of range, a run-time error is detected and simulation exited with an appropriate error
message.

This node accepts ‘void’ inputs.

node z mux ctrl x1 -x2 void x4

nand: N inputs NAND element (Boolean logic)

node <nod_nam> nand <nod_nam...>

node y nand a b c

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

noise: Source of noise

node <nod_nam> noise <[- | +] DC_level> <noise_density_level>

node y noise dclev 0.01

114

The inputs must be analog type (constant or variable), and output node is always analog type. The DC
level can be signed, the noise density (RMS / Hz) value cannot. Output is a normally distributed
pseudo random noise. See also instruction “random_seed”.

nor: N inputs NOR element (Boolean logic)

node <nod_nam> nor <nod_nam...>

node y nor a b c

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

not: Negation element (Boolean logic)

(strictly equivalent node: “inv”).

node <nod_nam> not <nod_nam>

node y not x

The input node MUST be digital type, and output node is always digital type (0 or 1). Output if 1 if
input is 0, 0 otherwise.

offset: DC level shifter element

node <nod_nam> offset <[- | +] constant> <nod_nam>
node <nod_nam> offset <[- | +] variable> <nod_nam>

The output node is the same type as the input node (analog or digital). The DC level-shift can be a
constant or a variable but not a node nor an expression. Variable or constant type must be consistent
with node type.

If “y” is equal to “x” plus 2.5 then

node y offset 2.5 x

A user's variable can be used as DC level-shift:

dvar off 10
node y offset off x

 CAUTION: Nodes “offset” and “sum” are not equivalent.

or: N inputs OR element (Boolean logic)

node <nod_nam> or <nod_nam...>

node y or a b c

115

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

osc: Oscillator

node <nod_nam> osc <[- | +] offset> <ampl> <freq> <[- | +] phase>

node y osc 0.0 1.0 1000.0 _PI_

Similar to “sine” but computing speed is extremely fast. Output is analog type.

This node is built to support amplitude modulation but not frequency nor phase modulation. In this
case, use the node “sine”.

poly: Polynom of order N

node <nod_nam> poly <[- | +]coeff0> [<[- | +]coeffi> …] <nod_nam>

“y” is the polynom of a*x^2 + b*x + c, where “a”, “b”, and “-c” are variables and x the input node:

node y poly a b c x

The ouput node will be the type of the input node. Variables must be of the same type as the input node.

prod: N inputs multiplier element

node <nod_nam> prod <[- | +] nod_nam...>

“y” is the product of nodes “a”, “b”, and “-c”:

node y prod a b -c

The nodes “a”, “b”, and “c” MUST be the same type (analog or digital), and output node “y” will be of
this type.

 CAUTION: Nodes “gain” and “prod” are not equivalent.

quant: Quantifier

node <nod_nam> quant <nod_nam> <[- | +] nod_nam>
node <nod_nam> quant <parameter> <[- | +] nod_nam>
node <nod_nam> quant <constant> <[- | +] nod_nam>

 “y” is the quantification of “x”, with a quantification step of "stp":

node y quant stp x

The output node has the type of the input node. The quantification must have the same type as the input
node and must be strictly positive.

116

ram : Random access memory

node <nod_nam> ram <ram_nam’[‘addr_nod’]’> <CS> <RW_nod> <nod_nam>

Where the address <addr_nod>, the chip select control <CS> and the read/write control <RW_nod> are
digital type. The type of output (corresponding to the RAM read port) and of the input node
(corresponding to the RAM write port) must be compatible to the “array” declaration corresponding to
the RAM <ram_nam>. It is thus perfectly possible to define an analog RAM in NAPA!

The RAM has two unidirectional communication ports: read and write. The RAM is addressed only if
the chip select input <CS> is different from zero. When the chip select is equal to zero, no input nor
output operation is possible and read port is on hold. Read/Write control at 1 activates the read port. At
0, it activates the write port. During a write access, the read port is tracking the write port value.
Address is verified during run-time to remain inside the array limits (see instruction “array”). It is
possible to initialize a RAM using an initialization file (see node “rom”).

The simulator will track the read access to unitialized data and will issue a warning indicating the loop
index of the last occurrence (if any) at the end of the simulation.

node rp ram myram[m] cs rw wp
...
array (digital) myram[23]

How to simulate two RAM connected to a common bus? Use a node ‘mux’ with appropriate control to
model the common read port. In the following example, the bus is modeled by signals ‘rp’ and ‘wp’
resp. for read and write lines:

node cs1 inv ctr
node cs2 buffer ctr
...
node rp1 ram myram1[n] cs1 rw1 wp // selected when ctr is
0
node rp2 ram myram2[n] cs2 rw2 wp // selected when ctr is
1
node rp mux ctr rp1 rp2
...
array (digital) myram1[32]
array (digital) myram2[32]

There is another type of RAM, the dual port ‘ram2’.

ram2 Dual port random access memory

node <nod_nam> ram2 <ram_nam’[‘addr_nod’]’> <CS> <RW_nod> <nod_nam>

Similar to node 'ram'. Use 2 instantiations of the node to implement the dual port.

node rp1 ram2 myram[m] cs rw wp1
node rp2 ram2 myram[n] cs rw wp2
...
array (digital) myram[128]

117

rect: Rectifier element

node <nod_nam> rect <nod_nam>

 “y” is the absolute value of node “x” :

node y rect x

Output node conforms to the type of the input node.

register: Data register

node <nod_nam> register <control_nod_nam> <nod_nam>

node y register ctr x

The control MUST be digital type. The output node is the same type as the input node (analog or
digital). Node “y” follows the input node “x” if the control node is not 0. Value is held otherwise.

This node is strictly equivalent to “track”.

Consider initialization!

relay: One input relay, normally closed

node <nod_nam> relay <ctrl_nod_nam> nod_nam
node <nod_nam> relay <ctrl_var_nam> nod_nam
node <nod_nam> relay <ctrl_constant> nod_nam

node <nod_nam> relay <ctrl_nod_nam> nod_nam set_var_nam
node <nod_nam> relay <ctrl_var_nam> nod_nam set_var_nam
node <nod_nam> relay <ctrl_constant> nod_nam set_var_nam

node <nod_nam> relay <ctrl_nod_nam> nod_nam set_constant
node <nod_nam> relay <ctrl_var_nam> nod_nam set_constant
node <nod_nam> relay <ctrl_constant> nod_nam set_constant

node y1 relay ctrl x
node y2 relay ctrl x v
node y3 relay ctrl x 1.5
node y4 relay 0 x n

The input node can be analog type or digital type. The output node will be the same type as input.
Control type must be digital type. When control equals to 0, output is connected to input node. If not,
output is set to setting value (default 0 or 0.0).

118

An example of cell using a relay for reset:

“my_integrator.net”

cell interface $out $in $reset

#* delayed integrator with reset (chameleonic cell)

node $b delay $a
node $out relay $reset $b // here using default: setting to zero
node $a sum $in $out

rip: Bit wise rip bus

node <nod_nam> rip <mask> <nod_nam>

node b rip 0x0F50 a

Output node is a ripped value of input node: the extracted bits are aligned on the right. Mask must be
an unsigned hexadecimal constant.

node a ABCD EFGH IJKL MNOP QRST

Mask 0000 0000 1111 0101 0000 (i.e. 0x0F50)

node b 0000 0000 0000 00IJ KLNP

rom : Read only memory

node <nod_nam> rom <rom_nam’[‘addr_nod’]’> <CS>

Where the address <addr_nod> and the chip select control <CS> are digital type. The type of output
node (corresponding to the ROM read port) must be compatible with the “array” declaration
corresponding to the ROM <rom_nam>. It is thus perfectly possible to define an analog ROM in
NAPA!

The ROM has one unidirectional communication port. The ROM is addressed only if the chip select
input is different from zero. When the chip select <CS> is equal to zero, no output operation is possible
and read port is on hold. Address is verified during run-time to remain inside the array limits (see
instruction “array”).

119

node rport rom rom1[m] cs
...
array (hex) rom1[1024] “program.rom”

How to simulate two ROM connected to a common bus? Use a node ‘mux’ with appropriate control to
model the common read port. In the following example, the bus is modeled by signals ‘rp’ and ‘wp’
resp. for read and write lines:

node cs1 inv ctr
node cs2 buffer ctr
...
node rp1 rom myrom1[n] cs1 wp // selected when ctr is
0
node rp2 rom myrom2[n] cs2 wp // selected when ctr is
1
node rp mux ctr rp1 rp2
...
array (digital) myrom1[100] “program1.rom”
array (digital) myrom2[100] “program2.rom”

There is another type of ROM, the dual port ‘rom2’.

rom2 : Dual port read only memory

node <nod_nam> rom2 <rom_nam’[‘addr_nod’]’> <CS>

Similar to node 'rom'. Use 2 instantiations of the node to implement the dual port.

node rport1 rom2 myrom[m] cs
node rport2 rom2 myrom[n] cs
...
array (hex) myrom[1024] “program.rom”

rshift: Right shift element without rounding

node <nod_nam> rshift <shift_val> <nod_nam>
node <nod_nam> rshift <shift_var> <nod_nam>
node <nod_nam> rshift <shift_nod> <nod_nam>

ivar sh2 2
...
node y rshift 2 x
node z rshift sh2 x

In the example above, the values of “y” and “z” are equal to the value of “x” with the bits shifted by 2
positions to the right. Input node and shift value (node, variable or constant) must be digital type.
Output is digital type.

120

rshift1: Right shift element with rounding

node <nod_nam> rshift1 <shift_val> <nod_nam>
node <nod_nam> rshift1 <shift_var> <nod_nam>
node <nod_nam> rshift1 <shift_nod> <nod_nam>

ivar sh2 2
...
node y rshift1 2 x
node z rshift1 sh2 x

In the example above, the values of “y” and “z” are equal to the value of “x” with the bits shifted by 2
positions to the right and rounded to the nearest integer (like in mathematics: 1.5 gives 2 for instance).
Input node and shift value (node, variable or constant) must be digital type. Output is digital type.

rshift2: Right shift element with special rounding

node <nod_nam> rshift2 <shift_val> <nod_nam>
node <nod_nam> rshift2 <shift_var> <nod_nam>
node <nod_nam> rshift2 <shift_nod> <nod_nam>

ivar sh2 2
...
node y rshift2 2 x
node z rshift2 sh2 x

In the example above, the values of “y” and “z” are equal to the value of “x” with the bits shifted by 2
positions to the right and rounded. Unlike mathematics, depending if the integer part is odd or even, the
rounding process will be different for a fractional part of 0.5: 1.5 will give 2, 2.5 will give 2. Input node
and shift value (node, variable or constant) must be digital type. Output is digital type.

sign: Sign of signal

node <nod_nam> sign <nod_nam>

node y sign x

Input is digital or analog type. Output node is digital type. Output is +/-1 when <nod_nam> is larger of
smaller then 0, and is equal to 0 for input equal to 0. For analog signal, a signal with an absolute value
smaller then NAPA constant EPSILON is considered to be zero.

sine: Sine wave voltage generator

node <nod_nam> sine <[- | +] offset> <ampl> <freq> <[- | +] phase>

node y sine 2.5 5.0 freq 0.0

The DC offset, amplitude (peak value), frequency and phase can be constants, variables or nodes but
not expressions. Phase is expressed in radians. All these parameters are mandatory. This node will be
an analog type value.

121

This node is built to support amplitude, frequency and phase modulation.

 TIPS:
If there is no need of frequency nor phase modulation, prefer to use the node “osc” as trigonometric
functions are pretty long to compute and impact badly the speed of the simulations.

square: Square voltage source

node <nod_nam> square <[- | +] off> <ampl> <freq> <delay> [<duty_cycle>]

node y square 0.0 1.0 freq 0.0 0.33

The DC offset, amplitude, frequency, delay and duty cycle can be variables or constants but not nodes
nor expressions. All parameters are mandatory, duty cycle excepted. This is quite similar to node type
“sine” (Imagine a rectangularized sine wave) but this node does not allow any node as input.

Default duty cycle is 0.50.

 CAUTION:
Be aware that the square wave is sampled at the local sampling frequency. If sampling is not coherent
with the transitions of the square wave, effective duty cycle can be modified.

It is the responsibility of the user to keep the delay positive.

Take care that this node is not appropriate to make FM modulation: changing the frequency is causing a
phase discontinuity.

step: Step function source

node <nod_nam> step <[- | +] lvll1> <[- | +] lvl2> <timestep1> [<timestep2>]

fs 10.0e6
...
node y1 step 0.0 1.0 1.0e-6
node y2 step -1.0 1.0 1.0e-6 5.0e-6

Node will take the value of <lvl1> for current time strictly lower than <timestep1> or strictly larger
than optional parameter <timestep2>, and will take value <lvl2> otherwise. The levels and the time
steps can be variables but not nodes nor expressions. All parameters must be analog type. Output is
analog type.

 CAUTION:
Be aware that the step function is sampled at the local sampling frequency. If sampling is not coherent
with the transitions of the step, effective time transitions will be modified.

sub: Subtraction element

node <nod_nam> sub <[- | +] nod_nam> <[- | +] nod_nam>
node <nod_nam> sub <[- | +] nod_nam> <[- | +] number>

122

If “y” is the subtraction of nodes “a” and “b” then

node y sub a b

The input nodes MUST be the same type (analog or digital), and output node will be of this type.

sum: N inputs summing element

node <nod_nam> sum <[- | +] nod_nam...>

If “y” is the sum of nodes “a”, “b”, and “-c” then

node y sum a b -c

The input nodes MUST be the same type (analog or digital), and output node will be of this type. It is
important to note that overflow in digital processing is depending on the precise architecture of the
adder. A strict conformity to the real implementation is therefore necessary (a serie of two adders with
2 inputs do not correspond strictly to an adder with 3 inputs.

 CAUTION: Nodes “offset” and "sums" are not equivalent.

toggle: Toggle flip flop

node <nod_nam> toggle
node <nod_nam> toggle <nod_nam>

node y toggle x

The input and output nodes are digital type. Output node will toggle (level 0, 1, each time input x is
different from zero).

node z toggle

The output node is digital type. Output node will toggle

Consider initialization!

At the initialization, output node is equal to “DIGITAL_INI” by default. Use the instruction “init” to
overwrite the default initialization.

test: C expression cast to integer type

node <nod_nam> test <C_expression>

node y test (1.23 < msig) && ctr

This is just like an “ialgebra” node expecting the result of a C condition.
Inside the expression, you can mix NAPA nodes or variables with C global variables.

See also: “after” qualifier page 78.

123

track: Track and hold element

node <nod_nam> track <control_nod_nam> <nod_nam>

node y track ctr x

The control MUST be digital type. The output node is the same type as the input node (analog or
digital). Node “y” follows the input node “x” if the control node is not 0 (see also similar node “hold”).
It is held otherwise. This node is perfectly equivalent to node “register”.

Consider initialization!

triangle: Triangular voltage source

node <nod_nam> triangle <[- | +] off> <ampl> <freq> <delay> [<duty_cycle>]

node y triangle 0.0 1.0 1000.0 0.0

The DC offset, amplitude, frequency, delay can be variables or constants but not nodes nor expressions.
This is quite similar to node type “sine” (Imagine a triangularized sine wave) but this node does not
allow any node as input. An optional parameter controls the duty cycle. This parameter can be a
variable or a constant but cannot be a node nor an expression.

Default duty cycle is 0.50.

 CAUTION:
It is the responsibility of the user to keep the delay positive and the duty cycle between 0.0 and 1.0.
Take care that this node is not appropriate to make FM modulation: changing the frequency is causing a
phase discontinuity.

124

Duty Cycle = 0.0

Duty Cycle = 0.5

Duty Cycle = 1.0

trig: Trigger (dual, positive or negative edge trigger)

node <nod_nam> trig <[- | +] trig_value> <nod_nam> [(dual)]
node <nod_nam> trig <[- | +] trig_value> <nod_nam> (positive)
node <nod_nam> trig <[- | +] trig_value> <nod_nam> (negative)

In the following example, we fix the threshold at 2.5:

node y1 trig 2.50 x
node y2 trig 2.50 x (dual)
node y3 trig 2.50 x (positive)
node y4 trig 2.50 x (negative)

<trig_value> can be a constant or a variable but not a node nor an expression. Input node can be digital
type or analog type. Output node is digital type (value 0 or 1). Default trigger mode is “(dual)”.

 NOTE:
Trigger is disabled during the very first loop to avoid unwanted triggering.

uadc: N levels unsigned A/D converter

node <nod_nam> uadc <num_lev> <nod_in_nam> <nod_ref_nam>

The input node and the reference node must be analog type and the output node will be digital type.
The number of levels must be a positive constant integer. This analog to digital converter is unsigned
(for a signed converter, see “adc”).

A/D output is clipped when input is outside dynamic input range.

If “y” is the digitized value corresponding to node “x” digitized with 11 allowable levels:

node ref dc 1.0
node y uadc 11 x ref

input A/D 11 levels digital output

- ... 0.05 0

0.05 ... 0.15 1

0.15 ... 0.25 2

0.25 ... 0.35 3

0.35 ... 0.45 4

0.45 ... 0.55 5

0.55 ... 0.65 6

0.65 ... 0.75 7

0.75 ... 0.85 8

0.85 ... 0.95 9

0.95 ...  10

125

udac: N levels unsigned D/A converter

node <nod_nam> udac <num_lev> <nod_in_nam> <nod_ref_nam>

The input node must be digital type, the reference node must be analog and the output node will be
analog type. The number of levels must be a positive constant integer. This digital to analog converter
is unsigned (for a signed converter, see “dac”).

D/A output is clipped when input is outside dynamic input range.

node ref dc 1.0
node y udac 11 x ref

input D/A 11 levels analog output

n <= 0 0.00

1 0.10

2 0.20

3 0.30

4 0.40

5 0.50

6 0.60

7 0.70

8 0.80

9 0.90

n >= 10 1.00

wsum: Weighted sum of N inputs

node <nod_nam> wsum <[-|+] weight> <nod_nam> [... <[-|+] weight >
nod_nam>]

The output node is the same type as the input nodes (analog or digital). The weight factor can be a
constant or a variable but not a node nor an expression. Variable or constant type must be consistent
with node type.

This node allows N inputs of pair of one weight and one node.

node w wsum 2.5 x 1.5 y 7.8 z

A user's variable can be used as weight factor:

dvar g pow(10.0, ampldB/20.0)
node w wsum g x 1.25 y

xnor: N inputs XNOR element (Boolean logic)

node <nod_nam> xnor <nod_nam...>

126

node y xnor a b c

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

xor: N inputs XOR element (Boolean logic)

node <nod_nam> xor <nod_nam...>

node y xor a b c

The input nodes MUST be digital type, and output node is always digital type (0 or 1).

zero: Insertion of zeroes

node <nod_nam> zero <decimation_factor> <decimation_offset> <nod_nam>

node y zero 8 3 x

The input node can be analog type or digital type. The output node will be the same type as input.
Control nodes (factor and offset) type must be digital type constants. Output is equal to input once
every decimation factor; otherwise it is zero. Offset shifts the output pattern.

 NOTE: Another way to introduce zeroes is to use the node “relay”.

127

NAPA Constants and Types

The simulator defines global constants available to
the user.

NAPA Constants

Several constants and macro constants are defined at the very beginning of the output C code and can be
used by user's functions or tools:

TRUE 1

FALSE 0

YES 1

NO 0

START 1LL

STOP 0LL

SEPARATOR “\n”

ANALOG_INI 0.0

DIGITAL_INI 0LL

EPSILON 2.000000000000000e-15

pi, _PI_ 3.141592653589793238 (double) / (long double)

pi2, _PI2_ 1.570796326794896619 (double) / (long double)

pi4, _PI4_ 0.7853981633974483096 (double) / (long double)

pi8, _PI8_ 0.3926990816987241548 (double) / (long double)

2pi, _2PI_ 6.283185307179586477 (double) / (long double)

e, _E_ 2.718281828459045235 (double) / (long double)

128

Other constants are customized, according to the NAPA source:

RANDOM_SEED (contains the seed value which will be used to initialize the pseudo
random noise generator of the simulator)

SHORT_TITLE (contains the current first line of the title as defined by “title”)

TITLE (contains the current title as defined by “title”)

FS (contains the value of the main sampling frequency as defined by “fs”)

FSL 7 (contains current value of the local sampling frequency as defined by “fs”
instruction modified by “decimate”, “interpolate” and “nominal”
instructions)

PERIODIC 8 (‘TRUE’ if periodic sampling is insured by construction, ‘FALSE’ in a
‘drop’ segment)

NUM_OF_SEGMENTS (contains the number of segments contained in the netlist)

NAPA_BUILT (contains the current NAPA compiler built time)

NAPA_VERSION (contains the current NAPA compiler version number)

PLATFORM (contains the name of the platform running the NAPA compiler)

SOURCE (contains the name of the source file processed by the NAPA compiler)

CODE (contains the name of the C file produced by the NAPA compiler)

USER (contains the user name if any)

CREATED (contains the date and time of creation of C code by the NAPA compiler,
followed by the user name if any)

NAPA_JOB_ID (contains the date and time of creation of C code by the NAPA compiler,
in a compact form)

CWD (contains the name of the working file directory where the ‘exe’ code
is run)

TERMINATE (contains the temination condition of the simulation)

ANTITHETIC (‘TRUE’ for antithetic pseudo-random stream, ‘FALSE‘ otherwise)

SYNCHRONIZE9 (global status of the synchronization of the tools)

7 FSL is defined as a macro pointing to an array of local sampling frequencies in case of multirate
simulation.

8 PERIODIC is defined as a macro pointing to an array of Booleans in case of multirate simulation.

9 SYNCHRONIZE is defined only when a tool is instantiated

129

A few enum type constants are defined to control the ‘IO_MANAGER()’ or the ‘NAPA_record_manager()’
included in the C code produced by the NAPA compiler: Their names are obtained with macro function
IO_COMMAND_NAME()

UNKNOWN

CLOSE

OPENAPPEND

OPENREAD

OPENWRITE

OPENAPPEND_BINARY (equivalent to OPENAPPEND on UNIX like operating systems)

OPENREAD_BINARY (equivalent to OPENREAD on UNIX like operating systems)

OPENWRITE_BINARY (equivalent to OPENWRITE on UNIX like operating systems)

QUERY

REWIND

REWRITE

ALLOCATE

DELETE

DEBUG

Some other macros exist only if “export” instruction is used

EXPORT 10

V_HEAD (string containing the name of the first exported variable)

V_NAME (first exported variable)

V_FORMAT (print format for the first exported variable)

V_TYPE (type of the first exported variable)

E_HEAD (string containing the list of the names of the exported variables)

E_LIST (list of exported variables)

E_FORMAT (print format for the list of exported variables)

10 The existence of this macro is checked by some tools to trigger the output of corresponding variable.

130

Constant Types

RANDOM_SEED Macro constant, long long integer.

SHORT_TITLE Macro constant, string.

TITLE Macro constant, string.

NUM_OF_SEGMENTS Macro constant, integer.

NAPA_BUILT Macro constant, string

NAPA_VERSION Macro constant, string

PLATFORM Macro constant, string.

ORIGIN Macro constant, string.

SOURCE Macro constant, string.

CODE Macro constant, string.

USER Macro constant, string.

CREATED Macro constant, string.

NAPA_JOB_ID Macro constant, string.

CWD Macro constant, string.

FSL Macro constant, double precision.

PERIODIC Macro constant, ‘TRUE’ or ‘FALSE’.

ANTITHETIC Macro constant, ‘TRUE’ or ‘FALSE’.

SYNCHRONIZE Macro constant, ‘YES’ or ‘NO’.

EXPORT Macro constant, defined or undefined.

131

 CAUTION: Do not change the value of these constants as you could corrupt the simulation.

Generic Types and Output Formats

Node and variable types are available for user-defined procedures:

I_TYPE NAPA digital type (C long long integer)

R_TYPE NAPA analog type (C double precision)

C_TYPE NAPA char type (C char)

Node and variable output format are available for user-defined procedures:

I_FORMAT NAPA digital type output format

R_FORMAT NAPA analog type output format

S_FORMAT Format of string variable type.

132

Global Variables

There are a few global variables and macro variables that you should be aware of:

long SEGMENT (macro)

long long LOOP_INDEX (macro)

long long ABS_LOOP_INDEX (macro)

long long REL_LOOP_INDEX (macro)

int TERMINATE (macro)

long long TOOL_INDEX (macro)

double TIME (macro)

double ABS_TIME (macro)

double REF_TIME (macro)

double REL_TIME (macro)

double WALL_CLOCK (macro)

int ASSERT_FLAG (macro)

int DUMP_FLAG (macro)

int ERROR_FLAG (macro)

SEGMENT: the current segment number.

LOOP_INDEX: used in main loop of program, this index counts from 0 to infinity. Not reset at a “restart”.
This counter counts the loops as defined in the netlist. Real number could be higher as the simulator is
running at the lowest common multiple value of the segment frequencies.
It is typically used to set a condition to stop the simulation. “LOOP_INDEX” is coded as a ‘long long’ to
avoid the roll-off.

ABS_LOOP_INDEX: absolute loop counter counting the simulation loops.

REL_LOOP_INDEX: relative loop counter, resetted synchronously with “TOOL_INDEX” changes.

TERMINATE: this macro contains the termination condition of the simulator.

133

TOOL_INDEX: used in main loop of program, this index counts from 0 to infinity the number of tasks
executed by the synchronized tools. Not reset at a “restart”. It is typically used to set a condition to stop the
simulation (see also “drop” page 49). It is important to note that this macro variable exists only if a tool is
instantiated and synchronization not disabled.

ABS_TIME, TIME: these macros are synonyms and are copies of the internal variable “napa_absime”. You
can use these in user-defined functions that are functions of time. Do not attempt to change the value of the
internal variable “napa_absime” as it will cause disastrous side effects to the simulation.

REF_TIME: this macro is synonym and is a copy of the internal variable “NAPA_ref_time”. You can use it
in user-defined functions that are functions of time. Do not attempt to change the value of the internal
variable “NAPA_rel_time”as it will cause undesirable side effects to the simulation.

REL_TIME: relative value, reset synchronously with “TOOL_INDEX” changes.

WALL_CLOCK: this macro returns the wall clock time elapsed from the beginning of the simulation.

ASSERT_FLAG: This macro, a copy of internal variable “NAPA_assert_flag” is a flag indicating if an
assert condition has triggered an exit call. This exit call is managed by a “gateway” instruction if any.
Default value is FALSE..

DUMP_FLAG: This macro, a copy of internal variable “NAPA_dump_flag” is a flag indicating if a dump
condition has triggered an exit call. Default value is FALSE.

ERROR_FLAG: This macro, a copy of internal variable “NAPA_error_flag” tags error occurring during
the simulation.

 CAUTION:
It is forbidden to update any global variables like “NAPA_time”, “NAPA_assert_flag”… as you could
corrupt the simulation.

134

NAPA C Functions
and Macro Functions

Available C Macro Functions

Several macros are predefined in the generated C code. These macros can be used in any C functions
defined by the users.

ABS(x) absolute value of x

CLIP(x, l, h) return number ‘x’ clipped between ‘l’ and ‘h’

SIGN(x) sign of x

MIN(x, y) minimum of ‘x’ and ‘y’

MAX(x, y) maximum of ‘x’ and ‘y’

MODULO(x, y) generalized x modulo y, double type

ISSMALL(x) test if value is nearly zero

ISNOTSMALL(x) test if value is not zero

ISEQUAL(x, y) test equality of ‘x’ and ‘y’

ISNOTEQUAL(x, y) test inequality of ‘x’ and ‘y’

ISINSIDE(x, l, h) test if ‘x’ is inside interval [l,h]

ISOUTSIDE(x, l, h) test if ‘x’ is strictly outside interval [l,h]

ISTIME(t) test if ‘t’ is inside interval [TIME-0.5/FSL, TIME+0.5/FSL[

ISODD(x) test if ‘x’ is odd

ISEVEN(x) test if 'x’ is even

ISINTEGER(x) test if number n is an integer

ISNAN(x) test for NaN value

135

LIN2DB(x, r) linear to dB conversion of ‘x’, ‘r’ being the reference

DB2LIN(x, r) dB to linear conversion of ‘x’, ‘r’ being the reference

POW2DB(x, r) power to dB conversion of ‘x’, ‘r’ being the reference

DB2POW(x, r) dB to power conversion of ‘x’, ‘r’ being the reference

LOG(x) Logarithm in base E of ‘x’

POW(x, y) power ‘y’ of ‘x’

ROOT(x, y) root ‘y’ of ‘x’

LOG10(x) Logarithm in base 10 of ‘x’

POW10(x) power ‘x’ of 10

DEG2RAD(x) degree to radian conversion

RAD2DEG(x) radian to degree conversion

SIN(x) sine of ‘x’ using long double function 'sinl()'

COS(x) cosine of ‘x’using long double function 'cosl()'

SQR(x) square of ‘x’

SQRT(x) square root of ‘x’ if ‘x’ is positive, 0.0 otherwise

LENGTH(s) length of the string ‘s’

B2A(b) Converts a boolean in strings ‘true ‘ / ‘false’

RAND_01() Uniformly distributed pseudo-random number in interval [0..1]

RAND_01_X() Uniformly distributed pseudo-random number in interval]0..1[

D2I(x) converts a double float number in a long long integer number

I2D(n) converts a long long integer number in a double float number

LINDOMAIN(c, b, e) value linearly proportional to real ‘c’ between ‘b’ and ‘e’ when ‘c ‘
is included between 0 and 1

LOGDOMAIN(c, b, e) value logarithmically proportional to real ‘c’ between ‘b’ and ‘e’
when ‘c’ is included between 0 and 1

LINSWEEP(c, b, e, n) linear sweep from ‘b’ to ‘e’ controlled by integer ‘c’, ‘n’ points

LOGSWEEP(c, b, e, n) logarithmic sweep from ‘b’ to ‘e’ controlled by integer ‘c’, ‘n’
points

FSS(n) local sampling frequency in segment ‘n’

STS(n) local offset of sampling frequency in segment ‘n’

ISDELAYED(f,i) Check if a user defined function or tool has been delayed

ISOPTION(f,i,s) Check for option in user defined functions, tools and posts

ISNOTOPTION(f,i,s) Check for option in user defined functions, tools and posts

ISPARAMETER(f,i,o) Check for parameter in user defined functions, tools and posts

GETPARMADDRESS(f,i,o) Get parameter address in user defined functions, tools and posts

IO_MANAGER(c,f,n,s,t) Manage IO

136

IO_COMMAND_NAME(n) Get command name

PING(f) Ping function 'f' in included header files

Available C Functions

Several functions are predefined in the generic header file “Napa.hdr”. The simulator uses them to
customize the simulator to a particular environment. These functions MUST exist but they can be
empty.

void NAPA_init(void)

void NAPA_close(void)

Several other functions may be defined in the generated C code.

void NAPA_control_init(void)

void NAPA_end(void)

void napa_exit(long)

void NAPA_reset_nodes(void)

void NAPA_reset_variables(void)

void NAPA_array_setup(int)

void NAPA_record_setup(int)

void NAPA_ping(int)

void NAPA_seed(I_TYPE)

I_TYPE NAPA_basic_rand(I_TYPE)

I_TYPE NAPA_root(I_TYPE)

I_TYPE NAPA_rand(void)

int NAPA_check_for_option(char* , int, char*)

IO_COMMAND NAPA_record_manager(int)

Macros “ISDELAYED()”, “ISOPTION()”, “ISNOTOPTION()” or function “NAPA_check_for_option()”
is used internally by user defined functions to handle options.

It is sometimes interesting, for debug purpose, to publish the content of the arrays and records defined by
the NAPA instruction “array”. Use NAPA instruction “call”:

137

my_NAPA_file.nap”

header <Napa.hdr>
fs …
…
call void NAPA_record_setup(DEBUG) // for arrays of pointers
call void NAPA_array_setup(DEBUG) // for RAM and ROM
…
terminate …

138

A specific function providing the management of the IO stream (open, close IO files) is also defined
in the generated C code. This resources manager is used by the “output” instruction and is available
for the user-defined functions or tools.

IO_COMMAND NAPA_IO_manager(IO_COMMAND c, FILE **fp, char *fl, char *s, char *t)

which is called by user by the corresponding macro function “IO_MANAGER(...)”.

All standard mathematical ANSI-C functions are available (as defined in C header file “math.h”).

Other functions are defined in the generic “Napa.hdr” header file (see this file for details). This
header could be configured to adapt the compiler to a particular platform. These functions are then
available for the users (see file “Napa.hdr” in generic header directory for more information).

User’s C Functions

The user can define other C functions inside a NAPA header and include them as resources using the
header instruction. If a function is used explicitly in a NAPA netlist and is not a standard C
mathematical function as defined in the ANSI-C header file “math.h”, the NAPA compiler will
produce a C preprocessor directive.

Say that the expression “a * foo(b)” is used in the terminate condition of the NAPA netlist. NAPA
will produce the C code:

#define COMPILE_foo

If the function is not used explicitly, but is hidden inside some header files, NAPA has no way to
detect it and no directive will be issued.

These macro definitions help the user to compile the headers selectively using the classical

#ifdef COMPILE_foo
...
#endif

to enclose the code relative to the function to be compiled. This is the simplest mechanism offered
by NAPA to handle user-defined functions. More sophisticated concepts exist and will be explained
in next chapter.

139

User-Defined Functions
and Tools

The Concept

There are several ways to write user-defined functions. Some of them are plain C functions used as regular
C function inside “ialgebra”, “dalgebra”, “algebra”, “test”, “drop”, ... instructions. None of them require
special requirement or care.

Others are more sophisticated and are intended to be used as “dtool”, “itool”, “duser” or “iuser”. As they
interact directly with the NAPA compiler, some guidelines have to be followed. Each time such an
instruction is instantiated, the NAPA compiler performs several other actions. For example, for a “itool”
called “foo”, instantiated two times, with three arguments “name”, “node” and “num”:

This tool is described in a header file “foo.hdr” as

double itool_foo_03(char* fnam, double nod, long num, int id)
void check_itool_foo_03(char* fnam, double nod, long num, int id)
void init_itool_foo_03(char* fnam, double nod, long num, int id)
void reset_itool_foo_03(char* fnam, double nod, long num, int id)
void close_itool_foo_03(char* fnam, double nod, long num, int id)

We will use this NAPA netlist as example:

“my_NAPA_file.nap”

header <Napa.hdr>
header “foo.hdr”

fs 1.0e6
ivar n 1000
ivar m n/2
…
node in …
node out …
node a itool foo “result.out” in n
node b itool foo “stdout” out m
…
terminate …

140

The C code produced by the NAPA compiler corresponding to the instantiation of these tools is:

“my_NAPA_file.c”

…
#define COMPILE_itool_foo 2
…
#include “/Simulate/NapaDos/Hdr/Napa.hdr”
#include “foo.hdr”
…
int main(void) {
 …
 check_itool_foo_03(“result.out”, dnode_in, ivar_n, 0);
 check_itool_foo_03(“stdout”, dnode_out, ivar_m, 1);
 …
 init_itool_foo_03(“result.out”, dnode_in, ivar_n, 0);
 init_itool_foo_03(“stdout”, dnode_out, ivar_m, 1);
 …
 do {
 napa_absime = (long double) (NAPA_abs_loop_index / 1000000LL);
 …
 dnode_in = … ;
 inode_a = itool_foo_03(“result.out”, dnode_in, ivar_n, 0);
 …
 dnode_out = … ;
 inode_b = itool_foo_03(“stdout”, dnode_out, ivar_m, 1);
 …
 } while (!TERMINATE);
 …
 close_itool_foo_03(“result.out”, dnode_in, ivar_n, 0);
 close_itool_foo_03(“stdout”, dnode_out, ivar_m, 1);
 …
 return EXIT_SUCCESS;
}
…

The macro ‘COMPILE_itool_foo’ and the functions calls correspond exactly to the NAPA netlist. A full
example of the C code of such a tool is shown at the end of this chapter.

Post processing of time domain output (from instruction “output”) or output of a user’s defined tool is also
possible. Instruction “post” is placed directly after the output or the tool. Each time such an instruction is
instantiated, the NAPA compiler performs several other actions. For example, for a “post” called “analyze”
of the output of a ‘tsnr’ tool, postprocess instantiated one time, with two arguments “file_out” and “num”:

Define a macro:

#define COMPILE_post_analyze 1

where ‘1’ is the number of instantiations of ‘analysis’. For each instantiation, several functions are called,
for example for instantiation 4:

Preparation at the initialization of the simulation:

prepare_post_analyze_02(“tsnr”, “prev_out”, “file_out”, num, 4)

Execution at the end of the simulation:

141

execute_post_analyze_02(“tsnr”, “prev_out”, “file_out”, num, 4)

NAPA collects automatically the origin of the data (output or tool type), the output file to process and places
them in front of the parameters provided by the user. These functions will be placed respectively after the
tool initialization functions and tool close functions.

It is mandatory that the functions ‘prepare...’ and ‘execute...’ are predefined (empty or not). The number of
user’s arguments (here 2) is part of the resulting name of the functions.

Tool Synchronization

Simpler user defined functions (“duser” and “iuser”) are reserved to create new primitives to describe the
network. More sophisticated user-defined functions (“itool” and “dtool) are used to describe analysis tools
(like FFT, TSNR, Linearity, Distortion ...). These tools play a very important role in the simulation. As a
same analysis can be repeated during the same simulation, and as several analysis tools may be used, it is
particularly important that these tools can be automatically synchronized.
NAPA provides a simple synchronization mechanism based on messages thanks to a pointer (“NAPA_msg”)
to a structure called “mailbox”. This mechanism is handled by the simulator and is totally transparent to the
user. These pointers point to the mailbox reserved for each instantiation of the tools. The simulator, by
setting the message corresponding to “NAPA_msg->i”, indicates to the tool that it is authorized to process
the signal. The tool itself resets the message corresponding to the same pointer at the end of an analysis. To
send a status of its analysis back to the simulator, the tool uses a second message corresponding to
"NAPA_msg->o". A few other variables are stored in the mailbox. The variable "NAPA_msg->n" for
instance is set to 0 during initialization and is available to store an integer value. It is currently used to store
the state of the state machine describing the cycle of the tools if any. The simulator analyzes the resulting
messages coming from the tools and sends an adequate message to start or to hold new analysis. Next
paragraph shows an example of a synchronizable tool. A nice feature is that a tool without synchronization
code will not block the simulation nor will be affected by the synchronization messages.

An Example of Tool

Examples of “duser” and “iuser” functions have already been described (see corresponding nodes). Here is
a template of the most sophisticated structure of NAPA: a synchronizable “SMART TOOL“ able to check,
collect and process data by itself, able to check, open, fill and close an output file, while controlling the
simulation flow. You can of course imagine other ways to build user-function, but take care to insure some
coherence between headers.

This function, called here “template”, is only an EXAMPLE you can use to build your own user-defined tool.
Variations are of course possible and will depend on the application. Consult the generic NAPA header
library for other examples. This tool uses resources managers to simplify the code. See next paragraph for
details.

file “template.hdr”

#ifndef __TEMPLATE_HDR__
#define __TEMPLATE_HDR__

/* ** */

/* EXAMPLE OF ITOOL FUNCTION ACCUMULATING NUM ANALOG DATA BEFORE PROCESSING, */
/* PROCESSING AND OUTPUT BY "PACKETS" IN A FILE. */
/* SEVERAL TOOLS CAN BE INSTANTIATED INSIDE A SIMULATION. */

/* THIS ITOOL USES A DYNAMIC MEMORY ALLOCATION MANAGER SUPPOSED TO BE DEFINED IN */
/* FILE “/resource/dm.h”: ‘DA_resources_manager()’ AND THE IO RESOURCES MANAGER */
/* ‘IO_MANAGER()’ DEFINED IN THE OUTPUT C SOURCE. */

142

/* USAGE: node <no> itool template <"filnam"> <ni> ... <num> */

/* Where <"filnam"> is the pathname of the output file */
/* <ni> is the identifier of the node to be analyzed */
/* <num> is the number of points to analyze */
/* <no> is the number of single tasks already done by the tool */
/* */
/* */

/* THIS TOOL IS SYNCHRONIZABLE. */

/* ** */

/* NAPA itool defined functions: "template" */

/* ** FUNCTION HEAD TRIMMING, 3 ARGUMENTS FUNCTION ******************************* */

/* use the ANSI-C preprocessor to screen, complete or modify the parameter list */

#define check_itool_template_03(a,b,c,d) check_itool_template(a,b,#b,c,d)
#define reset_itool_template_03(a,b,c,d) reset_itool_template(a,b,#b,c,d)
#define init_itool_template_03(a,b,c,d) init_itool_template(a,b,#b,c,d)
#define close_itool_template_03(a,b,c,d) close_itool_template(a,b,#b,c,d)
#define itool_template_03(a,b,c,d) itool_template(a,b,#b,c,d)

/* ** PROTOTYPES ** */

void check_itool_template(char*, double, char*, long, int);
void reset_itool_template(char*, double, char*, long, int);
void init_itool_template(char*, double, char*, long, int);
void close_itool_template(char*, double, char*, long, int);
long itool_template(char*, double, char*, long, int);

void template_compute_and_print(long, int);
void template_my_function(long, int);

... all global function names must begin by "template_" to avoid name collision

/* ** PING INFORMATION ** */

#define itool_template_IS_REGISTERED

PING(itool_template);
... tools, when registered and PING() macro called, are able to respond to a ‘ping’
 command from the simulator. This is optional but highly recommended.

/* ** INCLUDE RESOURCES *** */

#include "resource/dm.h" /* dynamic memory manager */

/* ** MACRO CONSTANTS DEFINITIONS *** */

#ifdef COMPILE_itool_template /* compilation control directive */

#ifndef TEMPLATE_MAX
#define TEMPLATE_MAX MAX_NUMBER /* max number of tool "template" */
#endif

#define TEMPLATE_NUM_INITIAL_IS_REGISTERED

#if defined(TEMPLATE_NUM_INITIAL_IS_EMPTY) || !defined(TEMPLATE_NUM_INITIAL)
 #undef TEMPLATE_NUM_INITIAL
 #define TEMPLATE_NUM_INITIAL 0LL
#endif
...

/* ** GLOBAL VARIABLES ** */

double *template_in_array[TEMPLATE_MAX];

143

double *template_out_array[TEMPLATE_MAX];

long template_num[TEMPLATE_MAX]; /* store counter */
long template_np[TEMPLATE_MAX]; /* number of points */
FILE *template_fp[TEMPLATE_MAX]; /* output file pointer */

... all global variable names must begin by "template_" to avoid name collision

/* ** */

void check_itool_template(char *filnam, double x, char *name, long acc, int id) {
 if (id >= TEMPLATE_MAX) {
 fprintf(stderr, "NAPA run time Error: (template[%d])\n", id);
 fprintf(stderr, " Only %d TEMPLATE tools are allowed in a netlist\n", TEMPLATE_MAX);
 napa_exit(EXIT_FAILURE);
 }
 if (acc < 8L) {
 fprintf(stderr, "NAPA run time Error: (template[%d])\n", id);
 fprintf(stderr, " A minimum of 8 points must be accumulated\n");
 napa_exit(EXIT_FAILURE);
 }
 return;
}

void reset_itool_template(char *filnam, double x, char *name, long acc, int id) {
 ...
 return;
}

void init_itool_template(char *filnam, double x, char *name, long acc, int id) {
 template_np[id] = acc; /* FIXED as memory is allocated accordingly */
 DA_MANAGER(ALLOCATE, &(template_in_array[id]), acc, "template");
 DA_MANAGER(ALLOCATE, &(template_out_array[id]), acc, "template");
 IO_MANAGER(OPENWRITE, &(template_fp[id]), filnam, ".out", "template");
#ifndef NO_BANNER /* output file banner control */
 fprintf(template_fp[id], "# %s\n", SHORT_TITLE);
 fprintf(template_fp[id], "# (tool) template\n");
 fprintf(template_fp[id], "# (compiler version) %s\n", NAPA_VERSION);
 fprintf(template_fp[id], "# (source file) %s\n", SOURCE);
 fprintf(template_fp[id], "# (random seed) %lld\n", RANDOM_SEED);
 fprintf(template_fp[id], "# (signal) %s\n”, name);
 fprintf(template_fp[id], "# (number of samples) %ld\n", acc);
 fprintf(template_fp[id], "# (sampling frequency) %g Hz\n", FSL);
 fprintf(template_fp[id], "# \n");
 fprintf(template_fp[id], "# \n"); /* lines beginning by "# " are */
 fprintf(template_fp[id], "# \n"); /* ignored by software such */
 fprintf(template_fp[id], "# \n"); /* as GNUPLOT */
 fprintf(template_fp[id], "# \n");
 fprintf(template_fp[id], "# %s\n", CREATED);
 fprintf(template_fp[id], "# packet ...");
#ifdef EXPORT
 fprintf(template_fp[id], "%s", E_HEAD); /* column header for exported variables */
#endif
 fprintf(template_fp[id], "\n");
 fflush(template_fp[id]);
#endif
 NAPA_msg->n = TOOL_WAIT; /* initialize the tool state machine */
 return;
}

void close_itool_template(char *filnam, double x, char *name, long acc, int id) {
 DA_MANAGER(FREE, &(template_in_array[id]), template_np[id], "template");
 DA_MANAGER(FREE, &(template_out_array[id]), template_np[id], "template");
 IO_MANAGER(CLOSE, &(template_fp[id]), filnam, ".out", "template");
 return;
}

long itool_template(char *filnam, double x, char *name, long acc, int id){
 static long packet[TEMPLATE_MAX];
 long *num;
 long *pak;

144

 num = &(template_num[id]);
 pak = &(packet[id]);
 switch (NAPA_msg->n) {
 case TOOL_WAIT:
 if (NAPA_msg->i == FALSE) {
 break;
 }
 *num = -TEMPLATE_NUM_INITIAL;
 reset_itool_template(filnam, x, name, acc, id);
 NAPA_msg->n = TOOL_COUNTDOWN;
 case TOOL_COUNTDOWN:
 if (*num < 0L) {
 (*num)++;
 break;
 }
 NAPA_msg->n = TOOL_ACCUMUL;
 case TOOL_ACCUMUL:
 template_in_array[id][*num] = x; /* sampling input variable */
 (*num)++;
 if (*num < template_np[id]) {
 break;
 }
 NAPA_msg->n = TOOL_COMPUTE;
 case TOOL_COMPUTE:
 template_compute_and_print(*pak, id);
 fflush(template_fp[id]);
 (*pak)++;
 NAPA_msg->i = FALSE;
 NAPA_msg->n = TOOL_WAIT;
 break;
 }
 NAPA_msg->o = *pak;
 return NAPA_msg->o;
}

void template_compute_and_print(long packet, int id) {
 ...
 template_my_function(packet, id);
 ...
 fprintf(template_fp[id], " %3ld % 14e ", packet, ...);
#ifdef EXPORT
 fprintf(template_fp[id], E_FORMAT, E_LIST); /* exported variables */
#endif
 fprintf(template_fp[id], "\n");
 return;
}

void template_my_function(long packet, int id) {
 ...
 return;
}

...

#endif /* COMPILE_itool_template */

/* ** */

#endif /* __TEMPLATE_HDR__ */

You can then use the “itool” “template” in a NAPA netlist.

For example:

145

header <Napa.hdr>
header “/user/jdoe/template.hdr” // CALL RESOURCES
...
node ctr itool template “ofile.out” s1 128 // USE THE SMART TOOL
tool template “stdout” a4 1000 // SHORT FORM A SMART TOOL
...

NAPA will now take in charge all the process for you. NAPA is maintaining a list of instance identifiers,
thus you have to provide all parameters requested by the user-defined functions but the “id” parameter.
Use, if you want, the node “ctr” or the macro “TOOL_INDEX” pointing to the number of batches of tasks
the tool have already completed to control the variable(s) driving your simulation, like the amplitude for a
TSNR analysis, the frequency for a frequency tracking analysis, etc... See appendix D, page 162, for a
complete example.

It is possible to build more complex tools based on this principle. In these cases, the previous template does
not apply and must be reworked. But up to now, this template was used in 80% of the existing applications.

Resources Managers

Several resources managers help the users to create their own user-defined function or tool. One of this
resources manager is part of the C source produced by the NAPA compiler: “NAPA_IO_manager(...)” and
its corresponding macro function “IO_MANAGER(...)”. This resources manager is responsible to open/close
an IO stream, handling necessary verifications for the user (collision, access...).

USAGE: to open or close an IO stream

(void) IO_MANAGER(CLOSE, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(OPENAPPEND, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(OPENREAD, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(OPENWRITE, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(REWIND, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(REWRITE, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(DELETE, &filnam, “filnam”, “suffix”, “tag”)
(void) IO_MANAGER(DEBUG, &filnam, “filnam”, “suffix”, “tag”)
 n = IO_MANAGER(QUERY, &filnam, “filnam”, “suffix”, “tag”)

Where '&filnam' is a FILE pointer, “filnam” is the name of the stream (‘stdout’,
‘stderr’, ‘stdin’ or a file pathname), “tag” is a string identifying the user-defined
function or tool being used to document error messages if any. “suffix” is the default
suffix of the file to be processed, the resource manager will add automatically this
suffix to the file name if it is missing.

There is another command, used by the simulator itself:

(void) IO_MANAGER(-1, NULL, NULL, NULL, NULL)

It is releasing allocated memory of unused IO’s and compact internal registers.

Other resources managers are currently part of the standard header library (“hdr”). The use of these
resources managers is not mandatory but they are built to ease and secure the writing of complex user-
defined functions or tools.

See the generic header library for other examples.

146

147

APPENDIX A

NAPA Simulation Flow. Order of Execution

Initialization
Open I/O files if any.
Call NAPA initialization function.
Initialize user's variables and call “init” functions.
Initialize nodes not yet initialized by “init”.
Call user's and tool's check functions if any.
Call user's and tool's initialization functions if any.
Prepare post processing functions if any.
Load initialization file if any.

Main Loop
Repeat the loop...

Compute current time
Compute the segment processing conditions

Processing of block 1 (update variables) segment after segment
 Assert statement if any.
 Update user's variables and calls, input variables if any.

Processing of block 2 (update nodes) segment after segment
 Update nodes if any.

Processing of block 3 (time domain output) segment after segment
 Output values if any.

Update synchronization messages if any.
Increment loop index.
Dump internal states if required.

... Then the check termination condition and exit loop if requested

Termination
Close I/O files if any.
Call user’s functions and tool’s close down functions if any.
Execute post processing functions if any.
Call NAPA close down function.
Program exit.

149

RECOMMENDATION:

If you have any doubt concerning the
simulation flow, the only file to consult is
the C code file produced by NAPA.

150

APPENDIX B

NAPA Reserved Identifiers

NAPA is using C as native language. It is therefore not recommended or forbidden to use some keywords as
node or variable identifier. The NAPA compiler issues warning or error messages.

Please note that the NAPA compiler cannot verify that you are misusing C keywords.

In the following list, a “E” means that an error is produced and NAPA compilation exited if you use the
keyword as a node or variable identifier. A “W” means that a warning message is produced.

The classification between error and warning was chosen from an estimation of the risk caused by an
identifier misunderstanding.

$_
$assert$ internal use E

$call$ internal use E

$init$ internal use E

$null$ internal use E

$restart$ internal use E

A_

abs C function E

ABS macro function E

ABS_LOOP_INDEX macro E

ABS_TIME macro E

acos C function E

adc node W

after qualifier E

algebra node W

alias instruction E

ALLOCATE enum type E

alu node W

analog qualifier W

ANALOG_INI macro E

151

and node W

arithmetic qualifier W

array instruction W

asin C function E

assert instruction W

ASSERT_FLAG macro E

atan C function E

atan2 C function E

average node W

B_
before qualifier E

bshift node W

btoi node W

BTOA macro function E

buffer node W

bwand node W

bwbuffer node W

bwinv node W

bwnand node W

bwnor node W

bwnot node W

bwor node W

bwxnor node W

bwxor node W

C_
call instruction W

ceil C function E

cell node W

cell_interface interface E

C_TYPE typedef E

change node W

char C keyword E

clip node W

CLIP macro function E

clock node W

CLOSE enum type E

CODE macro E

command_line instruction W

152

COMMAND_LINE macro E

COMMAND_PARMS macro E

comment instruction W

COMMENT macro E

comp node W

const node W

constant qualifier W

copy node W

cos C function E

COS macro E

cosine node E

CREATED macro E

D_
D2I macro function E

dac node W

dalgebra node W

data instruction W

data_interface interface E

DB2LIN macro function E

DB2POW macro function E

dc node W

debug instruction W

DEBUG enum type E

decimate instruction W

declare instruction W

DEG2RAD macro function E

delay node W

DELETE enum type E

digital qualifier W

DIGITAL_INI macro E

directive instruction W

differentiator node W

div node W

double C keyword E

drop instruction W

dtoi node W

dtool node W

dual qualifier W

dump instruction W

DUMP_FLAG macro E

153

duser node W

dvar instruction W

E_

e, _E_ global constants E

E_FORMAT macro E

EPSILON global constant E

equal node W

error instruction W

ERROR_FLAG macro E

event instruction W

erf C function E

erfc C function E

exp C function E

expand qualifier W

export instruction W

EXPORT macro E

F_

fabs C function E

false global constant E

FALSE macro E

floor C function E

format instruction W

FREE enum type E

fs instruction E

FS global constant E

FSL macro E

FSS macro function E

fzand node W

fzbuffer node W

fzinv node W

fznand node W

fznor node W

fznot node W

fzor node W

fzxnor node W

fzxor node W

G_

154

gain node W

ganging instruction E

gateway instruction E

generator node W

geometric qualifier W

GETPARMADDRESS macro function E

H_

harmonic qualifier W

header instruction W

hex qualifier E

hold node W

I_

I2D macro function E

I_FORMAT macro E

I_TYPE typedef E

ialgebra node W

init instruction W

inject instruction W

input instruction W

int C keyword E

integer qualifier W

integrator node W

interlude instruction W

interpolate instruction W

inv node W

ISDELAYED macro function E

ISEQUAL macro function E

ISEVEN macro function E

ISINSIDE macro function E

ISINTEGER macro function E

ISNAN macro function E

ISNOTEQUAL macro function E

ISNOTOPTION macro function E

ISNOTSMALL macro function E

ISODD macro function E

ISOPTION macro function E

ISOUTSIDE macro function E

ISPARAMETER macro function E

ISSMALL macro function E

155

ISTIME macro function E

itob node W

itod node W

itool node W

iuser node W

ivar instruction W

L_

labs C function E

latch node W

LENGTH macro function E

LIN2DB macro function E

LINDOMAIN macro function E

LINSWEEP macro function E

load instruction W

log C function E

LOG macro function E

log10 C function E

LOG10 macro function E

LOGDOMAIN macro function E

LOGSWEEP macro function E

long C keyword E

LOOP_INDEX macro E

lshift node W

M_

max node W

MAILBOX macro function E

MAX macro function E

merge node W

min node W

MIN macro function E

mod node W

MODULO macro function E

muller node W

mux node W

N_

nand node W

NAPA_... C simulator identifiers E

156

NAPA_... C simulator macros E

negative qualifier W

new qualifier W

NIS macro function E

no qualifier E

NO macro E

node instruction W

noexpand qualifier W

noise node W

nominal instruction W

nor node W

not node W

NUM_SEGMENTS macro E

O_

offset node W

opcode instruction W

OPENAPPEND enum type E

OPENREAD enum type E

OPENWRITE enum type E

or node W

ORIGIN macro E

osc node W

output instruction W

post instruction W

P_

2pi, _2PI_ global constants E

pi, _PI_ global constants E

pi2, _PI2_ global constants E

pi4, _PI4_ global constants E

pi8, _PI8_ global constants E

P_TYPE typedef E

PACKET macro E

PERIODIC macro E

ping instruction W

PLATFORM macro E

pointer qualifier W

poly node W

positive qualifier W

pow C function E

157

POW macro function E

POW2DB macro function E

POW10 macro function E

POWEROF2 macro function E

prod node W

PS macro function E

Q_

quant node W

QUERY enum type E

R_

RAD2DEG macro function E

ram node W

RAND_01 macro function E

RAND_01_X macro function E

random_seed instruction E

RANDOM_SEED macro E

REL_LOOP_INDEX macro E

REF_TIME macro E

REL_TIME macro E

RESET enum type E

REWIND enum type E

REWRITE enum type E

R_FORMAT macro E

R_TYPE typedef E

rect node W

register node W

relay node W

restart instruction W

rip node W

rms qualifier W

rom node W

ROOT macro function E

rshift node W

rshift1 node W

rshift2 node W

S_

SEGMENT macro E

158

SEPARATOR macro E

SHORT_TITLE macro E

SIM_RATE macro E

sign node W

SIGN macro function E

sin C function E

SIN macro function E

sine node E

SOURCE macro E

sqrt C function E

SQR macro function E

SQRT macro function E

square node W

STAGE macro E

START macro E

STOP macro E

step node W

string instruction & qualifier W

STS macro function E

stuck instruction W

sub node W

sum node W

T_

tan C function E

terminate instruction W

test node W

TERMINATE macro E

TIME macro E

TIMER macro function E

TITLE macro E

title instruction W

toggle node W

tool instruction W

TOOL_INDEX macro E

track node W

triangle node W

trig node W

true global constant E

TRUE macro E

ts instruction W

159

U_

uadc node W

udac node W

update instruction W

UNKNOWN enum type E

USER macro E

V_

V_FORMAT macro E

V_TYPE typedef E

W_

WALL_CLOCK macro E

warning instruction W

when qualifier E

wsum node W

X_

xnor node W

xor node W

Y_

yes qualifier E

YES macro E

Z_

zero node W

160

APPENDIX C

NAPA File Naming Recommendation

To share information between users, a common file naming is recommended:

NAPA main netlist file xxxx.nap

NAPA netlist of a cell xxxx.net

NAPA schematic xxxx.sch (Schematic Editor)

MAC output xxxx.tmp (NAPA preprocessor)

MAXIMA package xxxx.mac

C code generated by NAPA xxxx.c

Executable binary code xxxx.bin (UNIX platform)

xxxx.exe (DOS platform)

NAPA header file and user’s profile xxxx.hdr

NAPA data cells xxxx.dat

Simulation output file xxxx.out

NAPA log file xxxx.log

NAPA dump file xxxx.dmp

NAPA load file xxxx.ini

NAPA ping file xxxx.png

NAPA RAM initialization file xxxx.ram

NAPA ROM description file xxxx.rom

NAPA generator (executable) no suffix (UNIX platform)

xxxx.exe (DOS platform)

NAPA generator (output cell) xxxx.gen

Graphics front end directives xxxx.plt (Gnuplot...)

161

APPENDIX D

NAPA Netlist Example

This example is using a user's SMART TOOL “tsnr” currently defined in the header library file “fft.hdr”. As
many other tools, “tsnr” output node is used to analyze and control the simulation. This tool is accumulating
the data automatically inside its internal arrays. During data accumulation, output node is kept to a constant
integer value (starting at 0). As soon as specified number of data samples is reached, “tsnr” computes FFT
and “tsnr”, stores the results in the specified output file or stream, resets its internal arrays, increments the
output node by 1, and begin the accumulation of the next data. Output node is used to control the amplitude
of the input signal of the circuit by user's variables “ampldb” and “ampl”.

The circuit is based on a cell instantiated two times:

The corresponding netlist of this cell is placed in file “ds1.net”:

162

file “ds1.net”
cell_interface $o $i $e $r

#* DS1, subcell of a digital Sigma-Delta simulator

declare (digital) $i $r // recommended for documentation and error tracking

#* $o output of the cell
#* $i input of the cell
#* $e quantization error
#* $r digital reference

node $rf dc (int) $r

node $rm copy -$rf // negative reference
node $rp copy $rf // positive reference

node $s1 sum $i $s4
node $o comp $s1 Zero
node $s2 mux $o $rp $rm
node $e sum $s1 $s2
node $s4 delay $e

The complete circuit uses this cell to build a  modulator. A SMART TOOL “tsnr” is connected to analyze
the circuit behavior and to control the simulation.

163

The main netlist corresponding to this network is placed in a file “example.nap”:

file “example.nap”
title "SIGMA-DELTA MODULATOR (MASH 2) analyzed at frequency #freq Hz"

header <Napa.hdr> // generic NAPA resources
header <./tool/fft1.hdr> // resources for TSNR analysis

directive WINDOW BLACKMAN_HARRIS // user's directive for FFT

dvar adbstart -60.0
dvar adbstop 0.0

fs 1.0e6

export ampl_db // exported to TSNR output
interlude 100

ivar numpts POWEROF2(14) // number of points (FFT)

dvar ref 1.0 // reference
dvar freq 1000.0 // signal frequency
dvar ampl_db LINSWEEP(ctr, adbstart, adbstop, 61) // amplitude (dB)
dvar ampl DB2LIN(ampl_db, 1.0) // amplitude (lin)

#* Activation

node i0 dc ref
node i1 sine 0.0 ampl freq 0.0
node i2 adc 1024 i1 i0

#* MASH2 Modulator

node o1 cell stage1 "./ds1.net" i2 e1 512 // first stage
node o2 cell stage2 "./ds1.net" e1 e2 512 // second stage
node o3 sum -s o2
node o4 sum o1 o3
node s delay o2

#* Analysis

node ctr itool tsnr "stdout" o4 ref 10000.0 numpts // TSNR analysis on 10kHz

#* Variables update

update ampl_db
update ampl

terminate ampl_db > adbstop

164

The corresponding netlist is placed in the file “example.nap”. This is the main NAPA source netlist.

This description is asking for a TSNR analysis (Total Signal to Noise Ratio) on a bandwidth of 10.0 kHz.
The TSNR analysis will be performed for 61 input amplitudes, each of then being computed after a 16384
data points FFT.

The NAPA compiler writes a file “example.c”. This is the C source of the simulator corresponding to the
netlist “example.nap”. After compilation of file “example.c” with an ANSI C compiler, an executable file
“example.bin” (or “example.exe” for DOS platforms) is produced.

THIS EXECUTABLE IS THE SIMULATOR CORRESPONDING TO THE NAPA NETLIST.

Results are directed to standard output, as requested in the NAPA source netlist “example.nap”. This
particular job runs in 1.5 second on a PC equipped with a Mobile Pentium 4 1.8 GHz and 256 Mbytes of
DRAM using a GNU ANSI-C compiler11 for Windows:

File "example.out"

SIGMA-DELTA MODULATOR (MASH 2) analyzed at frequency 1000.0 Hz
(tool) tsnr - frequency domain analysis
(compiler version) NAPA V3.04
(source file) example.tmp
(random seed) 474285303
(normalization) o4 / 1
(bandwidth) 0.000 Hz .. 10.000 kHz
(samples) 16384
(sampling frequency) 1.000 MHz
(frequency resolution) 61.035 Hz
(window) 4 Sample Blackman Harris

Sat Jan 22 20:50:07 2000 by YLEDUC
packet freq sig_RMS noise tsnr ampl_db
 0 9.765625e+002 -7.446675e+001 -7.053087e+001 -3.935882e+000 -6.000000e+001
 1 9.765625e+002 -6.731440e+001 -6.917046e+001 1.856052e+000 -5.900000e+001
 2 9.765625e+002 -6.512889e+001 -7.023648e+001 5.107589e+000 -5.800000e+001
 3 9.765625e+002 -6.394195e+001 -7.122892e+001 7.286974e+000 -5.700000e+001
 4 9.765625e+002 -6.318386e+001 -7.223130e+001 9.047439e+000 -5.600000e+001
 5 9.765625e+002 -6.267844e+001 -7.357855e+001 1.090011e+001 -5.500000e+001
 6 9.765625e+002 -6.231186e+001 -7.400046e+001 1.168860e+001 -5.400000e+001
 7 9.765625e+002 -6.202770e+001 -7.384892e+001 1.182122e+001 -5.300000e+001
 8 9.765625e+002 -6.182961e+001 -7.337622e+001 1.154660e+001 -5.200000e+001
 9 9.765625e+002 -6.167589e+001 -7.344078e+001 1.176489e+001 -5.100000e+001
 10 9.765625e+002 -5.864847e+001 -7.110639e+001 1.245792e+001 -5.000000e+001
 11 9.765625e+002 -5.744767e+001 -7.355547e+001 1.610780e+001 -4.900000e+001
 12 9.765625e+002 -5.678495e+001 -7.777345e+001 2.098850e+001 -4.800000e+001
 13 9.765625e+002 -5.634910e+001 -7.509994e+001 1.875083e+001 -4.700000e+001
 14 9.765625e+002 -5.501714e+001 -7.217447e+001 1.715733e+001 -4.600000e+001
 15 9.765625e+002 -5.375906e+001 -7.781078e+001 2.405171e+001 -4.500000e+001
 16 9.765625e+002 -5.312532e+001 -7.837689e+001 2.525157e+001 -4.400000e+001
 17 9.765625e+002 -5.192495e+001 -7.471363e+001 2.278868e+001 -4.300000e+001
 18 9.765625e+002 -5.095812e+001 -8.104025e+001 3.008214e+001 -4.200000e+001
 19 9.765625e+002 -5.004174e+001 -7.620252e+001 2.616077e+001 -4.100000e+001
 20 9.765625e+002 -4.900584e+001 -8.042699e+001 3.142114e+001 -4.000000e+001
 21 9.765625e+002 -4.793388e+001 -7.784428e+001 2.991040e+001 -3.900000e+001
 22 9.765625e+002 -4.718907e+001 -7.614738e+001 2.895831e+001 -3.800000e+001
 23 9.765625e+002 -4.605985e+001 -8.029064e+001 3.423078e+001 -3.700000e+001
 24 9.765625e+002 -4.501156e+001 -8.098262e+001 3.597106e+001 -3.600000e+001
 25 9.765625e+002 -4.402128e+001 -8.360330e+001 3.958202e+001 -3.500000e+001
 26 9.765625e+002 -4.304829e+001 -8.116132e+001 3.811303e+001 -3.400000e+001
 27 9.765625e+002 -4.210063e+001 -7.720244e+001 3.510181e+001 -3.300000e+001

11 the GNU ANSI-C compiler is a multi-platform package available as freeware.

165

 28 9.765625e+002 -4.100668e+001 -7.971265e+001 3.870597e+001 -3.200000e+001
 29 9.765625e+002 -4.007324e+001 -7.796018e+001 3.788694e+001 -3.100000e+001
 30 9.765625e+002 -3.903102e+001 -8.253785e+001 4.350682e+001 -3.000000e+001
 31 9.765625e+002 -3.803245e+001 -8.156209e+001 4.352963e+001 -2.900000e+001
 32 9.765625e+002 -3.705509e+001 -8.036737e+001 4.331228e+001 -2.800000e+001
 33 9.765625e+002 -3.601640e+001 -8.199764e+001 4.598124e+001 -2.700000e+001
 34 9.765625e+002 -3.502729e+001 -8.137936e+001 4.635207e+001 -2.600000e+001
 35 9.765625e+002 -3.402281e+001 -8.091091e+001 4.688810e+001 -2.500000e+001
 36 9.765625e+002 -3.304046e+001 -8.376941e+001 5.072895e+001 -2.400000e+001
 37 9.765625e+002 -3.203607e+001 -8.003268e+001 4.799661e+001 -2.300000e+001
 38 9.765625e+002 -3.102661e+001 -8.062194e+001 4.959534e+001 -2.200000e+001
 39 9.765625e+002 -3.002786e+001 -8.354172e+001 5.351386e+001 -2.100000e+001
 40 9.765625e+002 -2.903099e+001 -8.273380e+001 5.370281e+001 -2.000000e+001
 41 9.765625e+002 -2.803808e+001 -8.119011e+001 5.315203e+001 -1.900000e+001
 42 9.765625e+002 -2.703637e+001 -8.151107e+001 5.447470e+001 -1.800000e+001
 43 9.765625e+002 -2.603346e+001 -8.203287e+001 5.599940e+001 -1.700000e+001
 44 9.765625e+002 -2.502865e+001 -8.188762e+001 5.685896e+001 -1.600000e+001
 45 9.765625e+002 -2.403007e+001 -8.373852e+001 5.970845e+001 -1.500000e+001
 46 9.765625e+002 -2.302921e+001 -8.165119e+001 5.862198e+001 -1.400000e+001
 47 9.765625e+002 -2.202983e+001 -8.149322e+001 5.946339e+001 -1.300000e+001
 48 9.765625e+002 -2.102902e+001 -8.518589e+001 6.415687e+001 -1.200000e+001
 49 9.765625e+002 -2.003233e+001 -8.353684e+001 6.350451e+001 -1.100000e+001
 50 9.765625e+002 -1.903120e+001 -7.851827e+001 5.948707e+001 -1.000000e+001
 51 9.765625e+002 -1.803080e+001 -8.151046e+001 6.347967e+001 -9.000000e+000
 52 9.765625e+002 -1.702994e+001 -8.245947e+001 6.542953e+001 -8.000000e+000
 53 9.765625e+002 -1.602907e+001 -8.059553e+001 6.456646e+001 -7.000000e+000
 54 9.765625e+002 -1.503083e+001 -8.216098e+001 6.713015e+001 -6.000000e+000
 55 9.765625e+002 -1.403082e+001 -8.138439e+001 6.735358e+001 -5.000000e+000
 56 9.765625e+002 -1.303072e+001 -8.228670e+001 6.925598e+001 -4.000000e+000
 57 9.765625e+002 -1.203084e+001 -8.143161e+001 6.940077e+001 -3.000000e+000
 58 9.765625e+002 -1.103123e+001 -8.290200e+001 7.187077e+001 -2.000000e+000
 59 9.765625e+002 -1.003112e+001 -8.041750e+001 7.038638e+001 -1.000000e+000
 60 9.765625e+002 -9.031265e+000 -7.942846e+001 7.039720e+001 0.000000e+000
end of output file

The tool generates the fifteen first lines automatically. They begin by symbol “#” as a comment marker
(Gnuplot12 compatible).

First line is a copy of the title defined in the NAPA netlist. Second line is the name of the tool producing the
output. Following lines describe the main tool settings, including windowing function used by the “tsnr”
SMART TOOL (the default is defined inside the header file “fft1.hdr” and was reset to a Blackman-Harris
window thanks to the user’s directive “WINDOW”). Last comment line describes the content of the output
data.

Data are organized following specifications described in the user-defined tool “tsnr”. Data are including the
exported variable “ampl_db” as specified in the NAPA source file “example.nap”.

A detailed example of a user-defined tool was given in chapter “User-Defined Functions and Tools” (see
page 140).

12 Gnuplot is a multi-platform graphics package available as freeware.

166

APPENDIX E

Quick Reference: NAPA instructions

<any comment on one line>

array (analog) <array_name> ‘[‘<arr_size>‘]’ [<“file_pathname”>]

(digital) <array_name> ‘[‘<arr_size>‘]’ [<“file_pathname”>]

(pointer) <array_name> ‘[‘<arr_size>‘]’ <nod_nam | var_nam | array_name...>

(pointer) <array_name> ‘[]’ <node_nam | var_nam | array_name...>

assert <“text_message”> <C_Boolean_expression>

call void <C_function_returning_void>

<return_value> <C_expression>

command_line <var_name...> | fs | ts | void

comment <”text_message”>

data <“file_name”> <parameters…>

debug [<debug_level_number | identifier…>]

decimate [fs] <decimation_factor> [<decimation_initial_value>]

declare (analog) <identifier…>

(digital) <identifier…>

(string) <identifier…>

() <identifier…>

(constant) <identifier…>

(true) <a_function_returning_a_boolean…>

directive <C_preprocessor_macro_identifier> [<value>]

drop [fs] <C_Boolean_expression>

dump <“file_pathname”> [when <C_Boolean_expression_of_events>]

dvar <var_name> [<initial_value>]

error <”text_message”>

event <event_name> [<C_expression_returning_a_boolean>]

167

<event_name> (new) [<C_expression>]

export <global_variable_name>

<node_name>

<var_name>

format (analog) <“C_double_output_format”> | S | M | L

(digital) <“C_long_long_output_format”> | S | M | L

(string) <“C_string_output_format”> | S | M | L

fs [<sampling_frequency>]

ganging <array_name> ‘[‘<array_size>‘]’ <nod_nam | var_nam | array_nam...>

<array_name> ‘[]’ <nod_nam | var_nam | array_nam...>

gateway [<count_down>]

header <“file_pathname”> [(noexpand)]

<“file_pathname”> (expand)

init void <C_function_returning_void>

<var_name> <C_function>

<node_name> <C_expression>

inject <node_name> <C_function>

input <“file_pathname”> <var_name...>

“stdin“ <var_name...>

cell_interface <$node | $var | $parm...>

data_interface <$var | $parm...>

interlude <const1> [<const2>]

interpolate [fs] <interpolation_factor>

ivar <var_name> [<“initial_value”>]

load <“file_pathname”>

napa_version <version_id>

node <node_name> <node_kind> <node_name | var_name | parameter...>

void <node_kind> <node_name | var_name | parameter...>

nominal Fs

opcode <alu_name> <opcode_number> [<template>]

output <“path_nam”> <node_nam | var_nam...> [when <boolean_expr_of_events>]

<string_var_nam> <node_nam | var_nam...> [when <boolean_expr_of_events>]

“stderr“ <node_nam | var_nam...> [when <boolean_expr_of_events>]

“stdout“ <node_nam | var_nam...> [when <boolean_expr_of_events>]

ping [“stderr”]

<“path_nam”>

<string_var_nam>

168

post [<label>] <function_id> <file_name> [<parameters>]

 <label> void <file_name>

random_seed <[- | +] seed_number>

restart

string <var_name> [<“initial_value”>]

stuck <node_name> <C_expression_returning_a_number>

synchronize (yes) | (no)

terminate [<C_Boolean_expression>]

title <“some one-line text”>

tool <user_defined_itool> <parameters>

ts [<sampling_period>]

update <var_name> [<C_expression>] [when <boolean_expr_of_events>]

void <file_name>

warning <”text_message”>

169

APPENDIX F

Quick Reference: Node Syntax

adc <num_level> <input_node> <reference_node> R  I

algebra <C_expression> Chameleonic

alu <alu_name> <opcode node> <input_node...> Chameleonic

and <input_node> <input_node...> I  I

average <[- | +]input_node> <[- | +]input_node...> R  R

bshift <number> <input_node> I  I

<[- | +]shift_var> <input_node> I  I

<[- | +]shift_node> <input_node> I  I

btoi <input_node> <input_node...> I  I

buffer <input_node> I  I

bwand <hexavalued_mask> <input_node...> I  I

<input_node> <input_node...> I  I

bwbuffer <input_node> I  I

bwinv <input_node> I  I

bwnand <hexavalued_mask> <input_node...> I  I

<input_node> <input_node...> I  I

bwnor <hexavalued_mask> <input_node...> I  I

<input_node> <input_node...> I  I

bwnot <input_node> I  I

bwor <hexavalued_mask> <input_node...> I  I

<input_node> <input_node...> I  I

bwxnor <hexavalued_mask> <input_node...> I  I

<input_node> <input_node...> I  I

bwxor <hexavalued_mask> <input_node...> I  I

170

<input_node> <input_node...> I  I

cell <instance_name> <“file_name”> <parameter_list> N/A

change <input_node> X  I

clip <[- | +]threshold_low> <[- | +]threshold_high> <input_node> Chameleonic

clock < [“pattern_descriptor_aperiodic”.]
<“pattern_descriptor_periodic”>

 I

comp <[- | +]positive_input_node> <[- | +]negative_input_node> X  I

<[- | +]positive_input_node> <[- | +]variable> X  I

<[- | +]variable> <[- | +]negative_input_node> X  I

<[- | +]positive_input_node> <[- | +]number> X  I

<[- | +]number> <[- | +]negative_input_node> X  I

const [(digital)] <C_expression>  I

 (analog) <C_expression>  R

copy <[- | +]input_node> Chameleonic

cosine <[- | +]offset> <amplitude> <frequency> <[- | +]phase> X  R

dac <num_level> <input_node> <reference_node> I  R

dalgebra <C_expression_cast_to_real> X  R

dc [(analog)] <C_expression>  R

 (digital) <C_expression>  I

delay <[- | +]input_node> Chameleonic

<number> <[- | +]input_node> Chameleonic

<delays_var> <[- | +]input_node> Chameleonic

differentiator <[- | +]input_node> Chameleonic

div <[- | +]input_node> <[- | +]input_node> Chameleonic

<[- | +]input_node> <[- | +]variable> Chameleonic

<[- | +]input_node> <[- | +]number> Chameleonic

dtoi <input_node> R  I

dtool <dtool_name> [<parameter_list>] X  R

duser <duser_name> [<parameter_list>] X  R

equal <[- | +]input_node> <[- | +]input_node> X  I

<[- | +]input_node> <[- | +]variable> X  I

<[- | +]variable> <[- | +]input_node> X  I

171

<[- | +]input_node> <[- | +]number> X  I

<[- | +]number> <[- | +]input_node> X  I

fzand <input_node> <input_node...> R  R

fzbuffer <input_node> <input_node> R  R

fzinv <input_node> R  R

fznand <input_node> <input_node...> R  R

fznor <input_node> <input_node...> R  R

fznot <input_node> R  R

fznxor <input_node> <input_node> R  R

fzor <input_node> <input_node...> R  R

fzxor <input_node> <input_node> R  R

gain <[- | +]number> <input_node> Chameleonic

<[- | +]gain_var> <input_node> Chameleonic

generator <instance_name> <“generator_name”> <parameter_list> N/A

hold <control_node> <input_node> Chameleonic

ialgebra <C_expression_cast_to_int> X  I

integrator <[- | +]input_node> Chameleonic

inv <input_node> I  I

itob <bit_rank> <input_node> I  I

itod <input_node> I  R

itool <itool_name> [<parameter_list>] X  I

iuser <iuser_name> [<parameter_list>] X  I

latch <set_input_node> <reset_input_node> I  I

lshift <number> <input_node> I  I

<shift_var> <input_node> I  I

<shift_node> <input_node> I  I

max <[- | +]input_node> <[- | +]input_node...> Chameleonic

merge <[- | +]input_node_from_seg_a> <[- |
+]input_node_from_seg_b...>

Chameleonic

min <[- | +]input_node> <[- | +]input_node...> Chameleonic

mod <[- | +]input_node> <[- | +]input_node> Chameleonic

<[- | +]input_node> <[- | +]variable> Chameleonic

172

<[- | +]input_node> <[- | +]number> Chameleonic

muller <input_node> <input_node...> I  I

mux <control_node> <[- | +]input_node_0> <[- | +]input_node_1...> Chameleonic

<control_var> <[- | +]input_node_0> <[- | +]input_node_1...> Chameleonic

nand <input_node> <input_node...> I  I

noise <[- | +]DC_level> <noise_density_level>  R

nor <input_node> <input_node...> I  I

not <input_node> I  I

offset <[- | +]number> <input_node> Chameleonic

<[- | +]offset_var> <input_node> Chameleonic

or <input_node> <input_node...> I  I

osc <[- | +]offset> <amplitude> <frequency> <[- | +]phase> X  R

poly <[- | +]coeff0> [<[- | +]coeffi> …] <[- | +]input_node> Chameleonic

prod <[- | +]input_node> <[- | +]input_node...> Chameleonic

quant <input_node> <[- | +]input_node> Chameleonic

<variable> <[- | +]input_node> Chameleonic

<constant> <[- | +]input_node> Chameleonic

ram <name’[‘addr_node’]’> <CS_node> <control_node>
<W_node>

Declared

ram2 <name’[‘addr_node’]’> <CS_node> <control_node>
<W_node>

Declared

rect <input_node> Chameleonic

register <control_node> <input_node> Chameleonic

relay <control_node> <input_node> Chameleonic

<control_var > <input_node> Chameleonic

<control_node> <input_node> < [- | +] setting_var> Chameleonic

<control_var> <input_node> < [- | +] setting_var> Chameleonic

<control_node> <input_node> < [- | +] setting_constant> Chameleonic

<control_var> <input_node> < [- | +] setting_constant> Chameleonic

rip <hexavalued_mask> <input_node> I  I

rom <name’[‘addr_node’]’> <CS_node> Declared

rom2 <name’[‘addr_node’]’> <CS_node> Declared

173

rshift <number> <input_node> I  I

<shift_var> <input_node> I  I

<shift_node> <input_node> I  I

rshift1 <number> <input_node> I  I

<shift_var> <input_node> I  I

<shift_node> <input_node> I  I

rshift2 <number> <input_node> I  I

<shift_var> <input_node> I  I

<shift_node> <input_node> I  I

sign <input_node> X  I

sine <[- | +]offset> <amplitude> <frequency> <[- | +]phase> X  R

square <[- | +]offset> <amplitude> <frequency> <delay>
[<duty_cycle>]

 R

step <level1> <level2> <transition_time> [<transition_time>]  R

sub <[- | +]input_node> <[- | +]input_node> Chameleonic

<[- | +]input_node> <[- | +]number> Chameleonic

sum <[- | +]input_node> <[- | +]input_node...> Chameleonic

test <C_expression_cast_to_int> X  I

track <control_node> <input_node> Chameleonic

triangle <[- | +]offset> <amplitude> <frequency> <delay>
[<duty_cycle>]

 R

trig <number> <input_node> [(dual)] X  I

<number> <input_node> (positive) X  I

<number> <input_node> (negative) X  I

uadc <num_level> <input_node> <reference_node> R  I

udac <num_level> <input_node> <reference_node> I  R

wsum <weight> <input_node> ... <weight> <input_node> Chameleonic

xnor <input_node> <input_node...> I  I

xor <input_node> <input_node...> I  I

zero <decimation_factor> <decimation_offset> <input_node> Chameleonic

174

APPENDIX G

Quick Reference: The NAPA File System

Absolute reference “/ ”

Reference to a generic library < >

Reference to the root directory “ ”

Reference to the main directory “~/”

Reference to the current cell directory “./”

175

176

	Introduction
	The NAPA Compiler
	NAPA Identifiers
	NAPA Iterative Identifiers
	NAPA Instructions
	Comments
	Nodes or Variables ?

	The Concept of NAPA
	The NAPA Node
	The NAPA Netlist
	The Sampling Frequency
	The Netlist Processing
	Handling the Delays
	Node Determination and Sorting
	The Netlist to C Translation
	The Simulation Control
	NAPA in a Computer Network
	NAPA Compiler Command Line
	NAPA Portability
	C limitations: Important Warnings!
	C Casting: Important Warnings!
	NAPA Process Flow
	The NAPA File System
	1. Absolute Reference
	2. Generic Library Reference
	3. Root Directory Reference
	4. Main Directory Reference
	5. Current Cell Directory Reference

	Directory Definitions and Processing
	Best Practices

	NAPA Instructions
	NAPA Nodes
	Usage
	Chameleonic nodes
	Nodesets
	Pseudo-Nodes
	Unnamed and Unused Signals
	Automatic Nodes
	Bit Field Extractor
	Node Kind List

	NAPA User's Variables
	Usage
	Variable Type

	Register Arithmetic
	Width limited nodes and variables

	List of NAPA Instructions
	alias
	array
	assert
	call
	command_line
	comment
	data
	debug
	decimate
	declare
	directive
	drop
	dump
	dvar, ivar
	error
	event
	export
	format
	fs
	ganging
	gateway
	header
	init
	inject
	input
	cell_interface, data_interface
	interlude
	interpolate
	ivar
	load
	NAPA_version
	node
	nominal
	num_initial
	opcode
	output
	ping
	post
	random_seed
	restart
	string
	stuck
	synchronize
	terminate
	title
	tool
	ts
	update
	void
	warning
	# (comment)

	Instruction Qualifiers
	after, before
	when
	with
	(expand) | (noexpand)
	(negative) | (positive) | (dual)
	(no) | (yes)
	(nocheck)
	(hex)
	(digital)
	(analog)
	(string)
	(constant)
	(true)
	(arithmetic) | (geometric) | (harmonic) | (rms)
	(pointer)
	(new)
	(<option>[::<parm>])
	(<real_type_output_scaling>)
	(<integer_type_output_configuration>)

	Short Forms
	&update
	&constant
	&export
	&delayed

	Special symbols
	$ …
	./ …
	~/ …
	< … >
	(…)
	# …
	… // …
	.
	..
	…
	:
	::

	Node Kinds
	adc: N levels signed A/D converter
	algebra: Chameleonic C expression
	alu: User-defined ALU
	and: N inputs AND element
	average: Average of N inputs
	bshift: Barrel shifter
	btoi: N bits conversion to unsigned integer
	buffer: Non inverting buffer
	bwand: N inputs bit wise AND
	bwbuffer: Bit wise non inverting buffer
	bwinv: Bit wise inverter
	bwnand: N inputs bit wise NAND
	bwnor: N inputs bit wise NOR
	bwnot: Bit wise bit wise NOT
	bwor: N inputs bit wise OR
	bwxnor: N inputs bit wise XNOR
	bwxor: N inputs bit wise XOR
	cell: Sub circuit instantiation from a file
	change: Watchdog
	clip: Clip element
	clock: Digital clock generator
	comp: Comparator
	const: Constant
	copy: Signed copy
	cosine: Cosine wave voltage generator
	dac: N levels signed D/A converter
	dalgebra: C expression cast to real type
	dc: DC voltage source
	delay: Single or multiple delay
	differentiator: Non inverting differentiator
	div: Divider element
	dtoi: Converts an analog type node to digital type
	dtool: User-defined tool
	duser: User-defined function
	equal: Equality
	fzand: N inputs AND element (Fuzzy logic)
	fzbuffer: non inverting buffer (Fuzzy logic)
	fzinv: Negation element (Fuzzy logic)
	fznand: N inputs NAND element (Fuzzy logic)
	fznor: N inputs NOR element (Fuzzy logic)
	fznot: Negation element (Fuzzy logic)
	fzor: N inputs OR element (Fuzzy logic)
	fzxnor: 2 inputs XNOR element (Fuzzy logic)
	fzxor: 2 inputs XOR element (Fuzzy logic)
	gain: Gain element
	generator: Sub circuit generation from a file
	hold: Hold and track element
	ialgebra: C expression cast to integer type
	integrator: Non inverting integrator
	inv: Negation element (Boolean logic)
	itob: Bit extractor from digital node
	itod: Converts a digital type node to analog type
	itool: User-defined tool
	iuser: User-defined function
	latch: SR Latch
	lshift: Left shift element
	max: Maximum of N inputs
	merge: N inputs multiplexer from exclusive loop segments
	min: Minimum of N inputs
	mod: Modulo divider element
	muller: C Muller element, N inputs (Boolean logic)
	mux: N inputs multiplexer controlled by integer levels
	nand: N inputs NAND element (Boolean logic)
	noise: Source of noise
	nor: N inputs NOR element (Boolean logic)
	not: Negation element (Boolean logic)
	offset: DC level shifter element
	or: N inputs OR element (Boolean logic)
	osc: Oscillator
	poly: Polynom of order N
	prod: N inputs multiplier element
	quant: Quantifier
	ram : Random access memory
	ram2 Dual port random access memory
	rect: Rectifier element
	register: Data register
	relay: One input relay, normally closed
	rip: Bit wise rip bus
	rom : Read only memory
	rom2 : Dual port read only memory
	rshift: Right shift element without rounding
	rshift1: Right shift element with rounding
	rshift2: Right shift element with special rounding
	sign: Sign of signal
	sine: Sine wave voltage generator
	square: Square voltage source
	step: Step function source
	sub: Subtraction element
	sum: N inputs summing element
	toggle: Toggle flip flop
	test: C expression cast to integer type
	track: Track and hold element
	triangle: Triangular voltage source
	trig: Trigger (dual, positive or negative edge trigger)
	uadc: N levels unsigned A/D converter
	udac: N levels unsigned D/A converter
	wsum: Weighted sum of N inputs
	xnor: N inputs XNOR element (Boolean logic)
	xor: N inputs XOR element (Boolean logic)
	zero: Insertion of zeroes

	NAPA Constants and Types
	NAPA Constants
	Constant Types
	Generic Types and Output Formats

	Global Variables
	NAPA C Functions and Macro Functions
	Available C Macro Functions
	Available C Functions
	User’s C Functions

	User-Defined Functions and Tools
	The Concept
	Tool Synchronization
	An Example of Tool
	Resources Managers

	APPENDIX A
	NAPA Simulation Flow. Order of Execution
	Initialization
	Main Loop
	Termination

	APPENDIX B
	NAPA Reserved Identifiers

	APPENDIX C
	NAPA File Naming Recommendation

	APPENDIX D
	NAPA Netlist Example

	APPENDIX E
	Quick Reference: NAPA instructions

	APPENDIX F
	Quick Reference: Node Syntax

	APPENDIX G
	Quick Reference: The NAPA File System

