definition of the sigmoid sig(x) = 1.0 / (1.0 + exp(-x)) value in 0 sig(0) = 0.5 derivative of sig(x) sig'(x) = sig(x)*(1.0-sig(x)) slope in 0 sig'(0) = sig(0)*(1.0-sig(0)) = 0.5*0.5 = 0.25 symmetrisation of the sigmoid, with an output range [-1, 1] ssig(x) = 2.0*sig(x)-1.0 = (1.0 - exp(-x)) / (1.0 + exp(-x)) derivative of ssig(x) ssig'(x)= 2.0 * sig'(x) slope in 0 ssig'(0) = 0.5 normalization of the sigmoid, with a slope 1 nsig(x) = ssig(2*x) = (1.0 - exp(-2*x)) / (1.0 + exp(-2*x)) derivative of nsig(x) nsig'(x)= 4.0 * sig'(x) slope in 0 nsig'(0) = 1.0 generic sigmoid, symmetric, with an output range [-1 1] and a slope s gsig(x, s) = nsig(s*x) = (1.0 - exp(-2*s*x)) / (1.0 + exp(-2*s*x)) slope in 0 (d gsig(x,s) / dx)(0) = s